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Abstract 
National governments worldwide have implemented strategies to transition towards biobased 
economies, primarily driven by technological progress. However, how this transition unfolds at the 
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1  Introduction 

In the face of global ecological crises such as climate change, biodiversity loss, and resource depletion, 

governments worldwide have introduced strategies and agendas aimed at transitioning from a linear 

economy, which relies mainly on fossil and non-renewable resources, to a more circular, bio-based 

economy (Patermann & Aguilar, 2021; Proestou et al., 2023). The bioeconomy has thus received 

increased interest from scholars and policymakers, leading to several attempts to study and better 

understand its progress (Kriesch & Losacker, 2024b; Wydra, 2020). It utilizes biological resources and 

knowledge to produce goods, services and energy across all sectors. In this regard, knowledge of bio-

based technologies is a key pillar in the bioeconomy transition, as (novel) knowledge is a prerequisite 

for developing innovations that enable and accelerate this transition (Befort, 2023). 

In this paper, we contribute to a better understanding of the progress of the bioeconomy transition by 

studying the development of bio-based technologies at the regional level. We build on the literature in 

economic geography and the geography of innovation, arguing that regional transition trajectories are 

likely to be very heterogenous, depending on various region-specific factors and the regional 

technological capabilities. Empirically, we use patent data as a proxy for knowledge development and 

innovation activities, combining two unique patent datasets: one indicating the precise geographical 

location of patent inventors (de Rassenfosse et al., 2019), and the other indicating whether a patent is 

related to the bioeconomy (Kriesch & Losacker, 2024a). We utilize this data to study how 617 regions 

(functional urban areas) from 27 OECD countries have changed their patent portfolios regarding 

bioeconomy patents from 1982 to 2014. We develop a typology of bioeconomy progress and study the 

unique regional trajectories using geographical sequence analysis, a novel method recently introduced 

to the toolkit of economic geographers (Losacker & Kuebart, 2024). In the next step, we use shift-share 

techniques to better understand to what extent region-specific factors and the sectoral composition of 

the local patent portfolio contribute to the bioeconomy transition. The findings of our paper extend the 

literature on geography and innovation in the bioeconomy, and we develop recommendations for 

policymakers to implement place-based policies to support the bioeconomy transition. 

The remainder of this paper is structured as follows. In Section 2, we review the literature from the fields 

of economic geography and the geography of innovation to understand how regional transition paths 

may develop and how they might differ from each other. We also review the literature on regional 

bioeconomy transitions. In Section 3, we describe our empirical approach in detail and provide initial 

insights into regional bioeconomy trajectories. In Section 4, we present and discuss the main results. 

Section 5 concludes. 
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2   Theoretical background 

2.1 Establishing typologies of green regional path developments 

The theoretical background that motivates this paper mainly comes from research in the fields of 

evolutionary economic geography and the geography of innovation. In this stream of literature, 

numerous studies aim to understand how regions and their knowledge bases change over time, providing 

an important foundation for the empirical aims of this paper. 

The current debate on green industrial paths in regions raises questions about the conditions for the 

emergence of environmental innovations (and thus bioeconomy innovations) and the potential for 

regions to develop competitive advantages in these fields over time (Grillitsch & Hansen, 2019; 

Hansmeier & Kroll, 2024; Losacker et al., 2023). To this end, some authors are seeking to establish 

typologies of regional trajectories to account for similarities in otherwise unique and heterogenous 

developmental paths. Against this background, Trippl et al. (2020) have introduced the notion of green 

path development to describe the ecological transformation of industries on the regional level. More 

specifically, this notion is applied at the regional level from a regional innovation systems (RIS) 

perspective, accounting for the role of regional preconditions, institutional structures, and modes of 

innovation in both enabling and constraining (green) regional development. Based on an initial review 

of paths, the authors identify four: path renewal, path diversification, path importation, and path creation. 

Path renewal corresponds to a dynamic driven by the renewal of industry practices through the gradual 

adoption of environmental innovations. Path diversification corresponds to a dynamic in which brown 

industries use their dynamic capabilities to create new, complementary activities (Ayoub & Lhuillery, 

2024; Le Bas & Scellato, 2014). Path importation involves the arrival of firms from outside a region, 

helping to structure a new trajectory. Path creation corresponds to the emergence of a new industry 

within the region, notably through academic spin-offs. This typology underlines the combined role of 

knowledge availability, institutional conditions, agency, and the availability of local assets for steering 

regional trajectories. From the perspective of the role of institutions, following Martin and Coenen 

(2014), Grillitsch et al. (2023) have also established a five-route typology, highlighting both the role of 

internal dynamics under the effect of institutional investments, entrepreneurial investments, and external 

dynamics linked to the existence of crises impacting the regional economy. 

Other works have sought to create typologies of regions in relation to the mode of development of 

environmental innovations. For example, Grillitsch and Hansen (2019) have established a typology 

distinguishing between peripheral regions, regions specializing in green industries, regions specializing 

in brown industries, and metropolitan regions. Each of these regions exhibits particular local capabilities, 

notably in terms of available knowledge and actor configurations. Building on this basis, Hansmeier and 

Losacker (2024) have highlighted the existence of particular configurations depending on the types of 

actors present in a region. Through an exploration of regional trajectories in Germany, they found that 
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most regions were non-specialized in green domains, and their dynamics could ultimately be driven by 

start-ups, incumbents, or a combination of both. In the case of specialized regions, their trajectory is 

sustained either by incumbents capable of generating spillover effects or by newcomers triggering 

change. In summary, a growing body of literature in economic geography seeks to understand the 

various trajectories toward more environmentally friendly (i.e., green) regional economies. This 

literature helps explain how regions evolve over time in response to their specific regional preconditions. 

2.2  The role of knowledge in the development of new (green) regional paths 

Beyond attempts to classify regional trajectories, this literature raises the question, in the wake of re-

flections in evolutionary economic geography (EEG), of the elements generating regional differentia-

tion. The literature shares the diagnosis of an entanglement between available knowledge (Grillitsch & 

Hansen, 2019; Tanner, 2016), relations between actors, their agency (Grillitsch et al., 2023; Hansmeier 

& Losacker, 2024; Trippl et al., 2020) and institutional structures (Grillitsch et al., 2023; Martin & 

Coenen, 2014), the configuration of which is path-dependent, thus dependent on the preconditions of 

the regional economy. Much research in EEG has focused in particular on the role of knowledge in the 

development of new (green) paths. Consistent with authors who have sought to establish typologies of 

regional trajectories (see above), the literature on the geography of innovation emphasizes the path-

dependent, endogenous and localized nature of knowledge production (Antonelli, 2006; Broekel et al., 

2023; Feldman, 1994). This means that the development of new knowledge in a region is dependent 

both on the past knowledge available and accessible to the actors, and on possible recombinations 

thereof.  

In economic geography and related disciplines, there has been a longstanding debate on the extent to 

which the regional composition of knowledge and assets can foster innovation. This debate traces back 

to the concept of Marshallian externalities, which suggests that local specialization in a particular 

knowledge base drives innovation through specialization advantages. Conversely, evidence also high-

lights the role of diversity—referred to as Jacobian externalities—in promoting innovation, particularly 

in urban regions, where diverse knowledge sources enable novel combinations (Beaudry & 

Schiffauerova, 2009; Caragliu et al., 2016). While this debate leaves regions questioning whether to 

pursue a diversified or specialized knowledge base, economic geographers introduced a third approach 

some time ago: the concept of (un)related variety (Content & Frenken, 2016; Frenken et al., 2007). This 

idea is based on the notion of relatedness, suggesting that capabilities developed in one domain can also 

benefit the development of knowledge in another (related) domain. It has been argued that regions with 

a knowledge base comprising a variety of related domains are more likely to innovate, as knowledge 
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can be more easily recombined. Some authors put forward the idea that relatedness could make it pos-

sible to diversify regional knowledge bases, promoting their cross-fertilization, considering that the pos-

sible overlap between available knowledge would foster possible recombinations and the differentiation 

of one region from others (Balland et al., 2019; Boschma, 2023). This process, commonly referred to as 

related diversification, is considered a typical pathway for many regions (Boschma et al., 2017; 

Boschma & Frenken, 2012; Frenken et al., 2023). However, when regions diversify into entirely new 

and unrelated knowledge domains (unrelated diversification), they may foster more radical innovations 

(Balland et al., 2019; Boschma et al., 2023; Castaldi et al., 2015).  

The process of knowledge production on the regional level thus corresponds to a process of re-explora-

tion of existing knowledge stocks to select the relevant knowledge necessary to produce (environmental) 

innovations. Nevertheless, the possibilities to reinterpret the knowledge produced are limited by the 

skills that actors possess but also by the field of possibilities opened by institutions, thus joining the 

perspectives developed in qualitative approaches to regional innovation systems (Asheim & Coenen, 

2005; Isaksen et al., 2022). In the context of smart specialization strategies, regions with an already 

diversified knowledge base would benefit from a deepening of their knowledge bases (Rigby et al., 

2022). Conversely, as Boschma (2023) points out, peripheral regions tend to benefit from a strategy 

favoring activities with high relatedness and low complexity. If the associated benefits are relatively 

low, these peripheral regions could benefit more strongly from comprehensive diversification strategies 

by investing in knowledge that is uniquely complex, i.e., radically new to the territory. From the point 

of view of innovation policies, regions must therefore choose between strategies of cross-fertilization 

between locally available related technologies and strategies of investment in more complex (related) 

knowledge bases (Balland et al., 2019; Deegan et al., 2021). 

2.3 The bioeconomy from a regional perspective 

Much of the theoretical background described above also applies to the regional transition towards 

bioeconomies and to changes in the regional knowledge bases that support this transition (Giustolisi, 

2024). Since the adoption of the bioeconomy concept at the European level, the local dimension has 

been emphasized (European Commission, 2018, 2012), particularly as a means of fostering rural 

development. This has been one of the arguments presented by agro-industries and forestry actors to 

promote the bioeconomy. The study of these strategies has primarily focused on the perceptions of actors 

to highlight shared visions of the bioeconomy or on the technological fields developed, revealing a 

diversity of bioeconomy forms and difficulties in understanding the modes of bioeconomy development 

(Andersson & Grundel, 2021; Siekmann & Venghaus, 2024). In this vein, other works have sought to 

highlight the importance of stakeholder networks, the availability of a knowledge base, a suitable 
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institutional framework, and the multiplication of "helixes" (developing quadruple and quintuple helix 

approaches) to foster the development of the bioeconomy on a regional scale (Grossauer & Stoeglehner, 

2020; Halonen et al., 2022). Despite their interest, this line of research has struggled to provide a 

generalizable approach for capturing regional trajectories of bioeconomy development. 

To address this challenge of understanding the local level, work around the notion of clusters and its 

extension in terms of bio-clusters (Ayrapetyan et al., 2022; Hermans, 2018) has highlighted the role of 

alliances between regional economic and political players in structuring bioeconomy clusters. These 

clusters help mobilize political resources, knowledge, and funding for bioeconomy infrastructures 

(Befort, 2023; Birch, 2008; Hellsmark et al., 2016; Martin et al., 2023). These studies share a common 

interest in analyzing the flow of knowledge for the production of innovation, but have mainly focused 

on regions marked by the existence of a bioeconomy cluster centered on a biorefinery, adopting a 

research strategy aligned with the broader field of the geography of sustainability transitions (Hansmeier 

& Kroll, 2024). However, these biorefinery clusters have been structured mainly by the gradual addition 

of complementary activities around a paper mill or distillery, exploiting only a limited share of the 

bioeconomy's available technological variety (Bauer et al., 2018; Befort, 2020; D’Amato et al., 2020; 

Hellsmark et al., 2016). Additionally, these biorefineries tend to develop incremental innovations 

because they belong to industries (food and paper) that are more technology-intensive and have a 

knowledge base with a high degree of relatedness and low complexity (Befort, 2023). This regional 

specialization effect of the bioeconomy is confirmed by d'Adamo et al. (2022), who highlight inter-

regional differences between northern and southern Italy, based on the heterogeneous pre-eminence of 

bioeconomy sectors in the regions. Regional analysis of the bioeconomy should therefore be based on 

an analysis of the composition of the regional bioeconomy knowledge base, aiming to identify the 

dynamics of trajectories. 

The empirical section of this paper builds on the insights discussed in the literature review and 

contributes to the understanding of pathways toward regional bioeconomies. Specifically, we analyze 

how the regional knowledge base related to the bioeconomy evolves over time, enabling us to compare 

how different regions develop bioeconomy knowledge and assess their success in doing so. 

3   Data and Methods 

3.1 Data 

For the empirical part of this paper, we merge information from two original patent datasets. As is 

commonly done in innovation research, we use patents as a proxy to measure knowledge development 

and innovation activity (Archibugi, 1992; Griliches, 1990). The first dataset comprises patents 

pertaining to the bioeconomy, while the second dataset offers highly granular and detailed geographical 
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information on patent inventors. By merging these datasets, we aim to gain a comprehensive 

understanding of the geography of innovation in the bioeconomy. 

The bioeconomy patent dataset was recently published by Kriesch & Losacker (2024a). These authors 

employed a sophisticated natural language processing approach to identify patents related to the 

bioeconomy from patent abstracts. This method overcomes the limitations of rule-based approaches 

used for identifying bioeconomy patents, such as simple keyword searches or combinations of 

technology codes, which cannot fully capture the bioeconomy within existing classification systems. 

The dataset by Kriesch & Losacker (2024a) promises to provide a more complete picture of 

bioeconomy-related inventions, and we are among the first to make use of it. In a prior endeavor, using 

text data from firm websites, the same authors demonstrated the applicability of natural language 

processing approaches for measuring bioeconomy-related activities (Kriesch & Losacker, 2024b). The 

dataset by Kriesch & Losacker (2024a), derived from PATSTAT 2022, offers information on whether 

each unique patent (identified by the application ID) is linked to the bioeconomy. This allows for simple 

matching with data from PATSTAT or other patent databases. 

The second dataset utilized in this paper furnishes geographical details about patent inventors. 

Generally, the geographical analysis of patenting activity is subject to various biases when relying on 

applicant information for geolocation, such as the influence of headquarter locations. To mitigate these 

issues, it is common practice to utilize inventor addresses, which offer a more accurate representation 

of where an invention was developed. However, the inventor information available in PATSTAT is 

often incomplete and may not accurately reflect the true geographic origin of patent developments. To 

address these challenges, we utilize the geocoded patent dataset published by De Rassenfosse et al. 

(2019). This dataset enhances PATSTAT's address data with additional information from major patent 

offices, allowing for the precise determination of geographic coordinates for the majority of inventor 

addresses. We match the bioeconomy patents to this dataset using the unique application ID of each 

patent. At this stage, our dataset encompasses a total of geocoded 16,534,658 patents. Among these, 

1,093,281 (6.61%) patents relate to the bioeconomy. In a next step, we utilize the inventor locations 

provided by De Rassenfosse et al. (2019) to match each patent to one or several functional urban areas 

(FUAs) in OECD countries as defined by Dijkstra et al. (2019). FUAs encompass not only city centers 

but also their economically integrated surrounding areas, as evidenced by commuting patterns. Utilizing 

FUAs in geographical patent analysis offers several advantages over traditional administrative 

boundaries, which may obscure the true locations of inventions due to factors like cross-boundary 

commuting by inventors. Furthermore, reliance on administrative boundaries can introduce issues often 

associated with the modifiable areal unit problem, such as scale and aggregation effects that can distort 

statistical results. FUAs are increasingly utilized in empirical research on innovation geography 

(Broekel et al., 2023; Fritsch & Wyrwich, 2021), making them highly suitable for the analysis presented 

in this paper. In attributing patent counts to FUAs, we adhere to a full count approach, recognizing that 
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knowledge is an indivisible good. This allows us to straightforwardly tally the number of bioeconomy 

patents as well as the total patents per region and year. We compute three-year moving windows for the 

number of patents per region and year to smooth out fluctuations due to outliers and shocks, as well as 

to reflect the cumulative nature of knowledge development. Subsequently, we exclude all regions where 

the total number of patents is less than five in any year within our observation period, resulting in the 

removal of several smaller regions. The final dataset used for the empirical analysis in this paper consists 

of a balanced panel of 617 functional urban areas from 27 OECD countries, covering the period from 

1982 to 2014. We must acknowledge that the geocoded patent data is only available up until 2014, a 

limitation that affects other studies as well (Broekel et al., 2023; Fritsch & Wyrwich, 2021). This is 

particularly unfortunate given the surge in political and public interest in the bioeconomy during the 

2010s. However, we argue that valuable lessons for the current debate can still be drawn from the long-

term changes in bioeconomy knowledge bases across regions. That is, while the term 'bioeconomy' has 

only gained prominence in recent years, much of the foundational knowledge it relies on was developed 

much earlier. 

Figure 1: Annual number of patents (bioeconomy and total) on log scale, global sum, 1982-2014 

For the final dataset, Figure 1 visualizes the development of the number of bioeconomy patents as well 

as the total patents on a logarithmic scale with the 3-year moving window counts. It is evident that there 

has been an upward trend in both the overall patent count and the number of bioeconomy patents, albeit 

with minor fluctuations in the proportion of bioeconomy patents over time. Moreover, there is 

considerable heterogeneity in the prevalence of bioeconomy patents across different countries (and also 

across different regions), as further illustrated by Figure A1 and A2 in the appendix.  
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3.2 Methods 

Utilizing the aforementioned unique dataset, our analysis focuses on the evolution of regional 

bioeconomy patent portfolios over time. Our primary objective is to delineate the regional pathways 

towards a bioeconomy, using data from the most recent year in the dataset (2014) as a reference point. 

Additionally, we aim to conduct comparative analyses between regions, facilitating an understanding of 

each region's bioeconomy development trajectory over time.  

To address these empirical goals, we propose a methodology based on three main empirical steps. In the 

first step, we create a typology that facilitates the comparison of the progression of regional 

bioeconomies over time by categorizing each region for each year into a distinct state. This typology 

will help us assess the progress of the bioeconomy. In the second step, we use sequence analysis 

techniques to understand how the state of each region has changed over time, drawing region-specific 

evolutionary trajectories. We then compare the similarity of regional sequences based on cluster 

analysis, providing us with typical patterns of how regional bioeconomies change. In the final step, we 

uncover the mechanisms behind these changes through a shift-share analysis for each cluster. This final 

step allows for a better understanding of the regional trajectories identified. 

Classification of bioeconomy regions  

Assessing the advancement of the bioeconomy across regions, we consider three primary dimensions. 

(1) The first dimension focuses on the patent volume of a region, comparing the count of bioeconomy 

patents in region r during year t against the median count of bioeconomy patents across all regions in 

the benchmark year of 2014. It approximates a region's success in developing bioeconomy-related 

knowledge, with some regions contributing significantly to the global bioeconomy knowledge stock, 

while others, with less successful regional innovation systems, contribute less.  (2) The second 

dimension pertains to the Relative Comparative Advantage (RCA) of a region in the bioeconomy 

domain. We calculate the RCA to assess the relative strength of region r in year t in the bioeconomy, 

using the proportion of bioeconomy patents among all patents in 2014 as a benchmark. This enables us 

to gauge the advancement of the bioeconomy within a region relative to the global state in the most 

recent year observed in our study. An RCA greater than 1 signifies that a region possesses a higher share 

of bioeconomy patents relative to the benchmark, indicating a comparative advantage. Conversely, an 

RCA lower than 1 suggests that the region's share of bioeconomy patents is below the benchmark, 

reflecting a comparative disadvantage. The RCA can be denoted as follows: 
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RCA𝑟,𝑡 =

(
BE Patents𝑟,𝑡

Total Patents𝑟,𝑡
)

(
∑ BE Patents𝑟,2014𝑟

∑ Total Patents𝑟,2014𝑟
)

Based on the two dimensions of bioeconomy patent volume and relative comparative advantage in 

bioeconomy patents, we ex ante categorize regions into four distinct states that signify their development 

in the bioeconomy for each year covered in our dataset: 

 Non-bio regions: These are regions whose bioeconomy patent volume falls below the global median 

of 2014 and concurrently possess an RCA value less than 1. This classification suggests that such 

regions have no comparative advantage in the bioeconomy nor have they demonstrated significant 

innovation activity. These regions have a weak bioeconomy knowledge base. 

 Hidden bio regions: These regions are characterized by an RCA greater than 1, indicating a 

comparative advantage in bioeconomy patents, yet their bioeconomy patent volume remains low. 

This implies that despite their smaller scale, they have a focused and potentially impactful 

bioeconomy knowledge base. 

 Emerging bio regions: Regions are designated as emerging bio regions if they have a bioeconomy 

patent volume exceeding the global median of 2014, but an RCA lower than 1. This indicates that 

while these regions are very active in bioeconomy patenting, they are not as specialized in it relative 

to the global benchmark. They therefore possess a strong knowledge base but focus on other 

domains rather than the bioeconomy. 

The fourth category, denoted as leading bio regions, comprises those regions that exhibit a comparative 

advantage in bioeconomy patents, with an RCA greater than 1, and concurrently possess a high volume 

of bioeconomy patents. These are global frontrunner regions with a bioeconomy-related knowledge base 

that is strong both in terms of total output and comparative advantages. (3) At this stage, we introduce 

a third dimension to further differentiate between two distinct types of leading bio regions. That is, we 

study the concentration of bioeconomy patents across technological domains, as classified by CPC 

codes, within a region. This allows us to further differentiate between two types of leading bio regions: 

 Leading specialized bio regions: These are regions with both a high volume of bioeconomy patents 

and an RCA exceeding 1, indicating a comparative advantage in bioeconomy patents. Additionally, 

these regions display a concentration of patents in a few CPC classes, suggesting a focused expertise 

in specific areas of the bioeconomy. 

 Leading diversified bio regions: Similar to specialized bio regions, diversified bio regions also 

have a high volume of bioeconomy patents and an RCA greater than 1. However, unlike their 

specialized counterparts, diversified bio regions have a broad distribution of bioeconomy patents 

across a wide array of CPC classes, indicating a varied and extensive patent portfolio within the 

bioeconomy. 
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For this dimension, we employ the Shannon Index H as a measure of the diversity within a regional 

portfolio of bioeconomy patents. This index assesses the distribution of bioeconomy patents across 

different CPC classes (4-digit), capturing both the variety of patent classes represented (richness) and 

the relative number of patents in each class (evenness). For a specific region r and year t, H is calculated 

as follows: 

𝐻𝑟,𝑡 = −∑ (𝑝𝑟,𝑡,𝑗 ⋅ 𝑙𝑛(𝑝𝑟,𝑡,𝑗))
𝑗

where 𝑝𝑟,𝑡,𝑗 is the proportion of bioeconomy patents in patent class j out of the total bioeconomy patents 

in region r during year t. A high value for 𝐻𝑟,𝑡 suggests that the region's bioeconomy portfolio is more 

diverse, meaning that patents are more evenly spread across different CPC classes. This implies that the 

bioeconomy portfolio in that region is not heavily concentrated in a few areas but is instead spread out 

across a wider range of technological domains. A lower Shannon Index suggests that the region's 

bioeconomy portfolio is less diverse, with a higher concentration of patents in fewer CPC classes. This 

implies specialization in a few areas within the bioeconomy. A Shannon Index of 0 would indicate no 

diversity, meaning all bioeconomy patents in the region for that year fall into a single CPC class. We 

categorize leading bio regions into specialized bio regions and diversified bio regions based on the 

median Shannon Index in 2014 as a threshold. In summary, our classification assigns each region (FUA), 

for every year within our panel dataset, to one of the five distinct states. Figure 2 visualizes this 

classification. 

Relative comparative advantage in bioeconomy patents 

No comparative advantage Comparative advantage 

Bioeconomy 

patent 

volume 

Low Non-bio region Hidden bio region 

High Emerging bio region 

Leading 

specialized bio 

region 

Leading 

diversified bio 

region 

Figure 2: Classification of bioeconomy regions 

Sequence analysis 

The approach described above allows us to monitor the evolution of the bioeconomy in each region over 

time, resulting in distinct regional trajectories. For this purpose, we employ sequence analysis 
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techniques, a collection of methods suited for analyzing and exploiting this type of data. Sequence 

analysis handles multivariate categorical time series data and is extensively applied across various 

research domains within the social sciences (Abbott, 1995; Liao et al., 2022). Despite its widespread 

use, it has only recently been adopted in geographical studies focusing on regional innovation activities 

(Hansmeier & Losacker, 2024; Kuebart, 2022; Losacker & Kuebart, 2024). 

Sequences are defined as the orderly arrangement of states for each observational unit over time. In a 

more formal context, a state sequence of length l is a sequentially ordered list comprising l elements 

(states) selected from a set A (referred to as the alphabet). Thus, a sequence x can be represented as an 

array of states x = (x1, x2, x3, …, xl), where each xj is an element of A. In our study, sequences are 

operationalized as regional trajectories (see Losacker & Kuebart, 2024). Sequences are thus the 

chronological arrangement of states from our typology depicted in Figure 2 (our alphabet) over time. In 

other words, we classify each region for each year and assign one of the five types, thus obtaining 

sequences depicting the change in regional bioeconomy patent portfolios. The change in type between 

two years then indicates a change in the regional bioeconomy portfolio. However, we limit these changes 

to situations where a type is maintained for at least two consecutive years to smooth out short-term 

variations resulting from proximity to the defined thresholds. Figure 3 illustrates the distinct bioeconomy 

trajectories of three German regions: Wetzlar (DE079), Marburg (DE053), and Frankfurt am Main 

(DE005). The figure is intended to depict what sequences look like, showcasing the evolution of 

bioeconomy patent activities in the three regions. 

Figure 3: Sequence index plots for Wetzlar (DE079), Marburg (DE053) and Frankfurt a. M. (DE005) 

Wetzlar (DE079), initially a non-bio region in the early 1980s, established a comparative advantage in 

bioeconomy patents until the mid-1990s (hidden bio region), eventually losing this advantage again and 

stabilizing as a non-bio region. Marburg (DE053) began as a hidden bio region, characterized by a 

comparative advantage in bioeconomy patents despite a low overall patent volume. Over time, Marburg 

not only retained its comparative advantage but also increased its patent volume, establishing itself as a 

leading bio region. Today, it is home to numerous research institutions and companies specializing in 

biotechnologies, making it a frontrunner in this sector both in Germany and globally. Frankfurt am Main 
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(DE005) has consistently maintained a high volume of bioeconomy patents throughout the observed 

period, a factor largely attributed to the region's size and thick regional innovation system. Despite its 

overall patent strength in diverse bioeconomy related fields, Frankfurt has also displayed a comparative 

advantage in bioeconomy patents for most of the time, but lost it in the early 2000s and can now be 

considered an emerging bio region with a high patent volume but without a comparative advantage. 

Sequence analysis thus enables a detailed examination of individual regional trajectories but, more 

crucially, it also facilitates the comparison of all 617 regional sequences with one another. To achieve 

this comprehensive comparison, we utilize an optimal matching (OM) algorithm that assesses the 

similarities and differences across all 617 regional sequences. An OM algorithm, often used in sequence 

analysis, is a method for quantifying the similarity between sequences. It calculates the distance between 

sequences by determining the minimum number of operations required to transform one sequence into 

another. These operations include insertion, deletion, and substitution of elements (states) within the 

sequences. The algorithm assigns costs to each operation (insertion, deletion, substitution), and the total 

cost of the optimal set of operations needed to match two sequences constitutes the 'distance' between 

them. This distance measure can then be used to cluster sequences into groups with similar patterns, 

identify outliers, or analyze the overall structure and dynamics within the dataset (Abbott & Tsay, 2000). 

For the empirical analysis presented in the next section, we have designated the cost for insertion and 

deletion operations as two for our OM algorithm. Additionally, we employ a substitution matrix, 

whereby all substitutions (altering one sequence element to another) are attributed an identical cost of 

one. However, substitutions of non-bio regions with leading bio regions (and vice versa), which are 

arguably more dissimilar, are assigned a higher substitution cost of two. For the three sequences shown 

above, it is thus evident that the optimal matching distance between Marburg and Frankfurt is smaller 

than the distance between Wetzlar and Frankfurt. This suggests a closer similarity in the bioeconomy 

trajectories of Marburg and Frankfurt compared to the similarity in the trajectories of Wetzlar and 

Frankfurt. 

The findings discussed in the subsequent section demonstrate stability with respect to variations in these 

parameters. Furthermore, alternative algorithms were explored in place of optimal matching, yielding 

results that closely align with those obtained through the OM algorithm. The distance matrix generated 

by our OM algorithm serves as the foundation for a hierarchical cluster analysis (specifically, Ward 

clustering). This method effectively groups regions with similar developmental trajectories into clusters, 

ensuring high within-cluster similarity and pronounced distinctions between clusters, thereby 

highlighting between-cluster heterogeneity. 
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Shift-share analysis 

To better understand the factors driving changes (growth) in regional bioeconomy portfolios, in the last 

step, we will delve deeper into the differences between the clusters through a shift-share analysis. Shift-

share analysis is a simple analytical tool used primarily in the fields of regional science and economic 

geography to examine how specific sectors within a region contribute to economic changes over time 

relative to a larger reference economy (like a global standard) (Dunn, 1960). It helps to identify whether 

the growth or decline of a region is due to global trends, the sectoral mix of a region, or specific regional 

factors. Shift-share analysis breaks regional growth intro three components: (1) Global share: This 

component measures what the region’s growth would have been if it had grown at the same rate as the 

global economy. It is calculated by applying the global growth rate to the region’s initial output levels. 

(2) Technology Mix: This factor assesses how the region's sectoral structure contributes to its 

performance. If a region is specialized in fast-growing sectors, this effect will be positive. It is calculated 

by looking at the difference between the global growth rate of each sector and the overall global growth 

rate, then applying this difference to the region's initial output in those sectors. (3) Regional share: This 

component analyzes the region’s performance relative to the global trend for each sector. It highlights 

the region's specific advantages or disadvantages by considering how much the actual growth rate of 

each sector in the region differs from its expected global growth rate. 

We perform the shift-share analysis on our empirical data as follows: we analyze the growth of regional 

output of bioeconomy patents from the start of the period to the end. Specifically, we calculate the total 

number of patents for the first five years starting in 1982 and for the last five years ending in 2014. We 

then compute the growth rate between these periods for each region, which indicates whether and to 

what extent the bioeconomy patent output in a region has changed over time. We then calculate the 

difference between these periods for each region, which indicates whether and to what extent the 

bioeconomy patent output in a region has changed over time. This difference is referred to as the total 

shift 𝑇𝑆𝑟. More formally, the total shift is represented by 

𝑇𝑆𝑟 = 𝑋𝑟
𝑡2 − 𝑋𝑟

𝑡1

where 𝑋 refers to the number of patents in region 𝑟 either in period one, 𝑡1, or in period two, 𝑡2. As 

mentioned above, we can break down the total shift into three components: the global share 𝐺𝑆𝑟, the 

technology mix 𝑇𝑀𝑟, and the regional share 𝑅𝑆𝑟. The sum of these components equals the total shift. 

𝑇𝑆𝑟 =  𝐺𝑆𝑟 +  𝑇𝑀𝑟 +  𝑅𝑆𝑟

We calculate the global share 𝐺𝑆𝑟 based on the global growth rate, denoted as 𝛾𝑔. This rate is used to 

estimate how the number of bioeconomy patents in a region would have changed if it had grown at the 

growth rate observed globally. By comparing the total shift 𝑇𝑆𝑟 and the global share 𝐺𝑆𝑟, we can 

determine whether a region has performed better or worse than expected given the global growth. 
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𝐺𝑆𝑟 = 𝑋𝑟
𝑡1 ∗ 𝛾𝑔

Next, we assess the technology mix effect 𝑇𝑀𝑟, which helps us understand the extent to which the 

sectoral composition of a regional bioeconomy portfolio has contributed to regional growth. In our case, 

we examine the distribution of regional bioeconomy patents across the 4-digit CPC classes. We use the 

global growth rate 𝛾𝑔𝑗 for each technology class 𝑗 to estimate how the patent output of region 𝑟 in 

technology class 𝑗 would have changed if it had matched the global growth rate. 

𝑇𝑀𝑟,𝑗 = 𝑋𝑟,𝑗
𝑡1  ∗  (𝛾𝑔,𝑗 −  𝛾𝑔)

Aggregating the technology mix effect from the region-sector level, denoted as 𝑇𝑀𝑟𝑗, to the regional 

level 𝑇𝑀𝑟, provides the overall impact of the sectoral composition on regional growth. Lastly, we can 

calculate the residual effect, which is considered the regional share. It captures all region-specific factors 

contributing to growth, net of the global share effect and the technology mix effect. This component of 

the analysis isolates the unique contributions of the region to its own growth, providing insights into 

how local conditions, policies, or capabilities have enabled the region to outperform or underperform 

relative to global trends and sectoral compositions. 

𝑅𝑆𝑟 =  𝑇𝑆𝑟 −  𝑇𝑀𝑟 −  𝐺𝑆𝑟

The results of the shift-share analysis will aid in comprehending the mechanisms behind changes in 

regional bioeconomy portfolios among the clusters identified in the preceding step. 

4   Results 

4.1 Sequence analysis 

Figure 4 displays sequence index plots for all 617 regions. In the index plots, each row corresponds to 

a regional sequence. Thus, the complete index plot offers a comprehensive overview of how all regions 

have evolved over time. The left panel presents an unsorted index plot, while the middle and right panels 

exhibit index plots sorted by the first state and by the last state, respectively. This sorting facilitates the 

visual analysis of the sequence data. When comparing the index plots, we observe an overarching trend: 

regional patent portfolios have progressively shifted towards a more biobased focus over time.  

This trend is discernible through the increasing number of regions classified as leading bio regions, 

accompanied by a corresponding decrease in the number of regions categorized as non-bio regions. 

Furthermore, a noteworthy decline is apparent in regions classified as hidden bio regions, denoting 

regions with a comparative advantage in biobased technologies but exhibiting a low patent volume. This 

decline is understandable in light of the general upward trend in biobased patents over time, as illustrated 
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in Figure 1. This trend also contributes to the rise in the number of regions classified as emerging bio 

regions, reflecting the increased biobased patent output observed in many regions. Most intriguingly, 

the sudden emergence of regions classified as leading specialized bio regions stands out. At the onset of 

the observation period, only a handful of regions fell into this category, yet there was a steady increase 

in the prevalence of this regional type throughout the 2000s. While many leading bio regions boast a 

diversified patent portfolio spanning multiple technological fields, there are also leading regions where 

biobased patents are concentrated within a narrow technological domain. In Figure A3 in the appendix, 

we also present a clearer depiction of the changes in the frequency of each state over time. In the same 

Figure, we also present the most frequent sequences, which are sequences that are similar across multiple 

regions. This provides another interesting insight, revealing a noteworthy degree of stability with a 

considerable number of regions maintaining the same state throughout the entire period. This stability 

is particularly pronounced for the leading diversified regions and, to a lesser extent, for the non-bio 

regions. Upon comparing this observation with Figure 4, we notice that leading regions are highly likely 

to retain their state over time. While some non-bio regions appear to remain in this state, many 

successfully transition towards more bio-oriented states. Indeed, this descriptive visual assessment of 

changes in regional patent portfolios offered by sequence analysis provides substantial insight into the 

advancement of the bioeconomy. 

Figure 4: Sequence index plots: unsorted (left), sorted by first state (middle), sorted by last state (right) 
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As evidenced by the full sequence index plots, regional sequences exhibit considerable heterogeneity, 

with regions following diverse pathways towards the bioeconomy. While these pathways are to some 

extent unique—indeed, approximately 85% of all sequences are distinct—there are also discernible 

general patterns that apply to several regions. For instance, transitioning from hidden bio regions to 

leading bio regions over time is a trend observed across multiple regions. To systematically explore 

these patterns, we computed a distance matrix that captures the dissimilarities between each sequence 

and all other sequences using optimal matching algorithms (see Section 3) and conducted a hierarchical 

Ward cluster analysis. This method facilitated the identification of six clusters (six pathways) 

characterized by similar patterns within each cluster, yet distinct differences between clusters. The 

decision to adopt a six-cluster solution was informed by considerations such as cluster size, 

interpretability, and was supported by clustering metrics such as the within-cluster sum of squares and 

the elbow criterion. The results are presented in Figure 5, depicting unsorted index plots by cluster. 

Additionally, sorted index plots are provided (refer to Figure A4 and Figure A5 in the appendix), along 

with state frequency plots (refer to Figure A6 in the appendix). 

Path 1 (steady leaders): This cluster predominantly features a consistent pattern of specialized bio-

regions over time. These regions have maintained a strong specialization in bioeconomy activities, 

marking them as long-term leading bio-regions. Notably, 98 out of 617 functional urban areas belong to 

this cluster. 

Path 2 (emerging innovators): This cluster includes regions whose sequences are characterized by a 

transition from a non-bio region state to an emerging bio-region state. Although these regions do not 

consistently exhibit a comparative advantage throughout the period, they have managed to increase the 

number of bioeconomy patents. Some regions in the cluster have also become leading regions. The 

cluster consists of 79 regions. 

Path 3 (stable non-bio regions): Dominated by non-bio region sequences, this cluster exhibits minimal 

change over time, with the majority of regions showing a stable absence of significant bioeconomy 

activity throughout the observed period. Some regions manage to establish a comparative advantage in 

biobased patents despite having low total outputs (hidden bio regions). It is the largest cluster, 

comprising 199 regions. 

Path 4 (hidden to leader): In this cluster, we observe a pattern similar to that in Path 2, characterized by 

a transition towards increased bioeconomy activities in terms of total patent output. Primarily, this 

cluster includes regions that were initially considered hidden bio regions and then transitioned to 

becoming leading bio regions. Consequently, they have sustained their competitive advantage while 

simultaneously increasing the overall output of biobased patents. The cluster features 67 regions and is 

the smallest cluster identified. 
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Path 5 (niche leaders): Regions in this cluster are quite distinct and their sequences are markedly 

different from sequences observed in other clusters. Primarily, this cluster includes regions categorized 

as hidden bio regions for most of the time. However, some manage to transition into specialized leading 

regions during the observed period, particularly in the 2000s. This is quite peculiar, given that most of 

the leading regions found in other clusters, and overall, typically have a diversified patent portfolio 

rather than a specialized one. Consequently, regions in this cluster tend to have a high concentration of 

bioeconomy patents in one or a few technological domains. The cluster includes 89 regions. 

Path 6 (declining bio-regions): While many paths, particularly Path 2 and 4, feature success stories of 

regions transitioning towards a stronger bioeconomy knowledge base, the regions in cluster 6 exhibit a 

different pattern. Initially categorized as leading regions at the beginning of the observation period, these 

regions later lose their comparative advantage and fall into the state of emerging bio regions. Despite 

still producing a high volume of biobased patents, the output is less than what would be expected given 

the global ratio. 

Figure 5: Sequence index plots by cluster, unsorted 
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The results of the sequence analysis provide a data-driven typology of pathways toward regional 

bioeconomies, to some extent complementing the pathways discussed in the pertinent literature (see 

Section 2.1). The six pathways identified through the analysis offer valuable insights into the various 

ways regions have changed their bioeconomy patent portfolios over time. While most regions have 

become greener (at least relative to 2014), they have followed different trajectories (e.g., Paths 2, 4, and 

5). However, some regions have lost their leading positions over time (Path 6). It is also important to 

note that a significant number of regions have remained in their initial positions—whether leading or 

lagging—for most of the period (Paths 1 and 3), underscoring the strong path dependencies in regional 

development. Table A1 in the appendix provides a list of all regions categorized by cluster. In the online 

appendix, we provide interactive versions of the sequence index plots with the region label to better 

explore the individual trajectories. We provide these interactive versions for both the full sequence index 

plot, as shown in Figure 4, and the sequence index plots by cluster, as shown in Figure 5. 

The results of the sequence analysis are robust to several adjustments in the empirical design, including 

different thresholds for state classification and alternative distance and clustering algorithms. However, 

there are some limitations to our research, many of which stem from the subjectivity involved in the 

numerous decisions made during the empirical design. The use of functional urban areas limits our 

empirical analysis because we cannot include additional structural variables as covariates in econometric 

analyses due to the lack of available secondary data at the FUA level. However, we utilized population 

data to examine differences between the clusters using an ANOVA (see also Figure A7in the appendix). 

The results indicate a significant effect of the cluster on log population sizes (F (5, 609) = 81.99, p < 

0.01). Given the significance of the overall model, a Tukey HSD post-hoc test was employed to 

investigate pairwise differences between clusters. The post-hoc analysis revealed significant differences 

(p < 0.01) in population sizes among most clusters, with the exception of differences between clusters 

4 and 2, as well as clusters 5 and 3, where the pairwise comparisons did not show significant variation. 

We observe an interesting geographical pattern: while, on average, highly populated urban regions are 

more successful (i.e., following Path 1 rather than Path 3), several less populous regions also fall within 

the successful pathways. This demonstrates that knowledge development for a transition to the 

bioeconomy is not exclusively tied to an urban premium, a point highlighted in previous studies as well 

(Kriesch & Losacker, 2024b).  

4.2 Shift-share analysis 

In addition, the results of the shift-share analysis help us make sense of the sequencing patterns described 

above. The sequence analysis has already revealed much about how regions have changed over time, 

i.e., from a non-bio region to a leading one, and how a region compares to the global average, but we 

know little about the underlying mechanisms of these changes. Hence, we examine the technology mix 
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effects as well as the regional share effects for each region (see Section 3.2), analyzed by cluster, in 

order to provide an overall picture. In Figure 6, we show the relative effects segmented by cluster. 

Figure 6: Shift-share effects by cluster 

For Cluster 1, we do not really see a coherent pattern. Some regions display a positive regional share 

effect, while others show a negative one, and the same holds true for the technology mix effect. Overall, 

the regions in Cluster 1 have sustained their leading state throughout the entire period, as explained 
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earlier. However, it appears that some—namely those with negative regional share and/or technology 

mix effects—have performed worse than the global trend. This reflects that these regions might also 

lose their leading position in the future. In Cluster 2, we see a clearer picture. In this cluster, all regions 

exhibit a negative technology mix effect, indicating that their bioeconomy portfolio is not optimal and 

includes many slow-growing technology fields. While regions in this cluster have indeed increased their 

bioeconomy patent output, they could have achieved even higher outputs if they had a different sectoral 

composition. The same essentially holds true also for regions in Cluster 4. In Clusters 3 and 5, with very 

few exceptions, all regions exhibit both a negative technology mix effect and a negative regional share 

effect. This indicates that regions in these clusters have a technology mix centered on slow-growing (or 

declining) sectors. This is particularly striking for the regions in Cluster 5 that have transitioned to a 

leading specialized bio region state. Although these regions are specialized and leading, they seem to 

concentrate on sectors that are not growing at a high rate globally. These regions are at high risk of 

becoming locked-in, potentially reverting to a non-bio region state. For Cluster 6, we also observe a 

quite mixed pattern. However, this is interesting to note because Cluster 6 includes many regions that 

have lost their comparative advantage over time while still maintaining a high overall output of 

bioeconomy patents. It appears that some regions have managed to maintain this high output because 

they are home to fast-growing sectors, as indicated by positive technology mix effects. Meanwhile, 

others also exhibit a positive regional share effect, suggesting that they are performing better due to 

unique locational factors. 

Overall, we find that differences in the technology mix effect between clusters are more pronounced 

than regional share effects. To support these descriptive results, we conducted an ANOVA to compare 

the technology mix effects across the different clusters. The results indicate a significant difference in 

the technology mix effects between clusters (F (5, 611) = 241.3, p < 0.01). Given the significance of the 

overall model, a Tukey HSD post-hoc test was employed to investigate pairwise differences between 

clusters. The post-hoc analysis revealed significant differences (p < 0.01) in the technology mix effects 

among most clusters, except for clusters 2 and 4, as well as clusters 3 and 5, where the pairwise 

comparisons did not show significant variation. For the regional share effects, we did not find significant 

differences between clusters (p > 0.05). Changes in regional bioeconomy patent output can thus be 

largely attributed to the sectoral composition of the regional patent portfolios, which favor either fast-

growing or slow-growing technology fields. In Figure A8 in the appendix, we present the growth rates 

of the thirty technology fields that have experienced the highest increase in bioeconomy patents. The 

highest growth rates are observed in biobased inventions within the fields of red biotechnology, 

specifically medical or veterinary science (A61), agriculture (A01), and foods (A23). Notably, there are 

also significant growth rates in technology fields related to technologies or applications for mitigation 

or adaptation against climate change (Y02) and biochemistry (C12). Regions with a technology mix 

focused on these fields have seen substantial growth in their bioeconomy patents. 
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Meanwhile, unique locational factors seem to play only a supporting role in explaining growth in 

bioeconomy patents. Moreover, we observe that for many clusters, the shift-share analysis yields 

strikingly similar effects across numerous regions within these clusters. This indicates that the clusters 

of regional trajectories identified through the sequence analysis not only appear similar in terms of how 

regions have changed over time, but these changes can also be explained by the very same mechanisms 

within the clusters. 

Still, the findings presented in this paper are primarily descriptive, focusing on documenting changes in 

regional bioeconomy patent portfolios over time, as this was our explicit aim, rather than linking these 

changes to their causal drivers. We leave that for future research. Future studies can build on our findings 

as a starting point, exploring in greater depth why regional bioeconomy pathways have evolved in 

specific ways. 

5 Conclusion 

In this paper, we aimed at enhancing the understanding of the bioeconomy transition by examining the 

development of bio-based technologies at the regional level. Our analysis built on the literature from 

economic geography and geography of innovation research, suggesting that regional transition paths are 

highly heterogeneous due to various region-specific factors and the regional sectoral mix. Using patent 

data as a proxy for knowledge development and innovation activities, we combined two unique datasets: 

one showing the precise geographical locations of patent inventors (de Rassenfosse et al., 2019) and the 

other identifying whether a patent is related to the bioeconomy (Kriesch & Losacker, 2024a). This data 

allowed us to examine how 617 regions (functional urban areas) across 27 OECD countries altered their 

patent portfolios concerning bioeconomy patents from 1982 to 2014. We created a classification of 

regional bioeconomies and analyzed the distinct regional trajectories, i.e., changes in this classification 

over time, using geographical sequence analysis, a novel method recently adopted by economic 

geographers (Losacker & Kuebart, 2024). Additionally, we applied shift-share techniques to determine 

the extent to which region-specific factors related to the sectoral composition of the regional patent 

portfolios influenced the bioeconomy transition trajectories.   

Our study revealed distinct regional trajectories towards a bioeconomy based on bio-based technologies, 

categorized into six clusters. Cluster 1 comprises long-term leading bio-regions, maintaining a 

consistent specialization in bioeconomy activities. Cluster 2 includes regions transitioning from non-bio 

to emerging bio-regions, increasing their bioeconomy patent output despite lacking a consistent 

comparative advantage. Cluster 3 is dominated by non-bio regions with minimal change, though some 

managed to gain a comparative advantage in bio-based patents. Cluster 4 shows regions evolving from 

hidden bio regions to leading bio regions, maintaining a competitive advantage while increasing patent 

output. Cluster 5 features regions with unique sequences, often transitioning from hidden bio regions to 

specialized leaders, with high concentrations of bioeconomy patents in specific technological domains. 



24 

Cluster 6 includes regions initially leading in bioeconomy patents but later losing their comparative 

advantage. The shift-share analysis indicated that differences in technology mix effects between clusters 

were more pronounced than regional share effects. Regions with a negative technology mix effect 

typically had slow-growing technology portfolios, while those with a positive effect were in fast-

growing sectors. Overall, the study suggests that place-based policy strategies are crucial for advancing 

regional bioeconomies, considering the heterogeneous nature of regional transition trajectories.
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Appendix 

Figure A1: Distribution of bioeconomy patents across FUAs and countries, 2014 

Figure A2: Share of bioeconomy patents in selected countries, 1982-2014
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Figure A3: Most frequent sequences (left), state frequency plot (right) 

Figure A4: Sequence index plots by cluster, sorted by first state 
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Figure A5: Sequence index plots by cluster, sorted by last state 
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Figure A6: State frequency plot by cluster 
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Table A1: Functional urban areas by cluster 

Cluster (regional 

trajectory) 
Functional urban area 

1 (steady leaders) 

Alachua, US; Amsterdam, NL; Basel, CH; Benton (WA), US; Berlin, DE; 

Boston, US; Brazos, US; Bremen, DE; Brussels, BE; Budapest, HU; Calgary, 

CA; Champaign, US; Charleston, US; Chicago, US; Cincinnati, US; Cologne, 

DE; Dane, US; Davidson, US; Durham, US; Dusseldorf, DE; East Baton 

Rouge, US; Ede, NL; Edmonton, CA; Fayette, US; Freiburg im Breisgau, 

DE; Fresno (Greater), US; Fukuoka, JP; Geneva, CH; Gent, BE; Gottingen, 

DE; Greater Melbourne, AU; Guelph, CA; Indianapolis, US; Ingham, US; 

Jackson (OR), US; Jacksonville, US; Jefferson (AL), US; Kalamazoo, US; 

Knox, US; Kobenhavn, DK; Kumamoto, JP; Kurashiki, JP; Kusatsu, JP; 

Lafayette (IN), US; Lafayette, US; Lancaster (NE), US; Lancaster (PA), US; 

Lausanne, CH; Leiden, NL; Lille, FR; Lyon, FR; Madrid, ES; Mannheim-

Ludwigshafen, DE; Matsuyama, JP; Monterey, US; Montpellier, FR; 

Montreal, CA; New Orleans, US; Norwich, GB; Oklahoma, US; Osnabruck, 

DE; Oxford, GB; Philadelphia (Greater), US; Polk, US; Richmond (Greater), 

US; Rome, IT; Rotterdam, NL; Sacramento, US; San Antonio, US; San 

Diego, US; San Joaquin, US; Sapporo, JP; Sarasota, US; Saskatoon, CA; 

Scott, US; Seo, KR; Seoul, KR; St. Louis, US; Strasbourg, FR; Takamatsu, 

JP; Tampa-Hillsborough, US; Tampa-Pinellas, US; The Hague, NL; 

Tokushima, JP; Toulouse, FR; Toyama, JP; Tubingen, DE; Tulare, US; 

Uppsala, SE; Utrecht, NL; Utsunomiya, JP; Vancouver, CA; Vienna, AT; 

Virginia Beach, US; Washington (Greater), US; Wiesbaden, DE; Winnebago 

(WI), US; Zurich, CH 

2 (emerging 

innovators) 

Aachen, DE; Albuquerque, US; Antwerp, BE; Aschaffenburg, DE; Atlantic 

City, US; Augsburg, DE; Bayreuth, DE; Berks, US; Bern, CH; Bocholt, 

Stadt, DE; Bologna, IT; Bonn, DE; Collier, US; Constance, DE; Cumberland 

(ME), US; Dauphin, US; Dresden, DE; Dublin, IE; Duren, Stadt, DE; 

Eindhoven, NL; Forsyth, US; Gothenburg, SE; Graz, AT; Greenville, US; 

Grenoble, FR; Guilford, US; Hampden, US; Heilbronn, DE; Ingolstadt, DE; 

Isesaki, JP; Karlsruhe, DE; Kent, US; Kern, US; Kiel, DE; Kitchener, CA; 

Kortrijk, BE; Lackawanna, US; Landshut, DE; Las Vegas, US; Lee, US; 

Leicester, GB; Linn, US; Liverpool, GB; Lubeck, DE; Lucas, US; Maastricht, 

NL; Madison, US; Monterrey, MX; Montgomery (AL), US; Montgomery 

(OH), US; Nagano, JP; Nice, FR; Nottingham, GB; Nuremberg, DE; 

Offenburg, DE; Oita, JP; Oslo, NO; Pima, US; Portsmouth, GB; Racine, US; 

Regensburg, DE; Rennes, FR; Richland, US; Rosenheim, DE; Saarbrucken, 

DE; Santa Barbara, US; Santa Cruz, US; Sedgwick, US; Southampton, GB; 

Spokane, US; St. Joseph, US; Ulm, DE; Utah, US; Vanderburgh, US; 

Washoe, US; Whatcom, US; Winnebago (IL), US; Wurzburg, DE; York, US 

3 (stable non-bio 

regions) 

Aalborg, DK; Aberdeen, GB; Allen, US; Amiens, FR; Annecy, FR; 

Annemasse, FR; Ashford, GB; Bamberg, DE; Basingstoke and Deane, GB; 

Bath and North East Somerset, GB; Belfast, GB; Bell, US; Benton (AR), US; 

Benton (MN), US; Bergamo, IT; Bergen op Zoom, NL; Besancon, FR; 

Biel/Bienne, CH; Blackburn with Darwen, GB; Blackpool, GB; Boras, SE; 
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Bourges, FR; Bournemouth, GB; Brantford, CA; Brescia, IT; Brighton and 

Hove, GB; Bristol, GB; Broome, US; Burnley, GB; Caen, FR; Cameron, US; 

Cardiff, GB; Carlisle, GB; Celle, DE; Chambery, FR; Charleroi, BE; 

Chatham, US; Cheltenham, GB; Chesterfield, GB; Colchester, GB; Como, 

IT; Coventry, GB; Crawley, GB; Dacorum, GB; Darlington, GB; Delaware, 

US; Derby, GB; Doncaster, GB; Douai, FR; Dundee City, GB; East 

Staffordshire, GB; Ector, US; El Paso (CO), US; El Paso (TX), US; 

Enschede, NL; Erfurt, DE; Erie (PA), US; Exeter, GB; Falkirk, GB; Ferrara, 

IT; Florence, IT; Friedrichshafen, DE; Fukushima, JP; Fulda, DE; Genesee, 

US; Genoa, IT; Glasgow, GB; Gloucester, GB; Great Yarmouth, GB; Greene, 

US; Guildford, GB; Halton, GB; Hamilton (TN), US; Harrison, US; Hastings, 

GB; Heerlen, NL; Helsingborg, SE; Hildesheim, DE; Ipswich, GB; Iserlohn, 

DE; Jonkoping, SE; Kaiserslautern, DE; Kassel, DE; Kempten (Allgau), DE; 

Kettering, GB; Klagenfurt, AT; Koblenz, DE; Kofu, JP; Koriyama, JP; Le 

Havre, FR; Le Mans, FR; Limerick, IE; Limoges, FR; Lincoln, GB; 

Linkoping, SE; Linz, AT; Livorno, IT; Lucerne, CH; Luton, GB; 

Luxembourg, LU; Luzerne, US; Mahoning, US; Maidstone, GB; Mansfield, 

GB; Marion (FL), US; Matsumoto, JP; McLennan, US; Medway, GB; Mesa, 

US; Metz, FR; Milton Keynes, GB; Mobile, US; Monchengladbach, DE; 

Muscogee, US; Muskegon, US; Napa, US; Nashville, US; Neubrandenburg, 

DE; New Hanover, US; Newcastle, AU; Newport News, US; Newport, GB; 

Niagara Falls, CA; North East Lincolnshire, GB; Northampton, GB; Nueces, 

US; Orebro, SE; Oulu, FI; Paderborn, DE; Passau, DE; Pavia, IT; Perugia, 

IT; Peterborough, CA; Peterborough, GB; Pforzheim, DE; Plymouth, GB; 

Pordenone, IT; Preston, GB; Punta Gorda, US; Redditch, GB; Remscheid, 

DE; Reutlingen, DE; Roanoke, US; Rochester (MN), US; Rouen, FR; 

Rushmoor, GB; Saginaw, US; Saint-Etienne, FR; Schweinfurt, DE; 

Schwerin, DE; Sebastian, US; Sheffield, GB; Siegen, DE; Slough, GB; 

Solingen, DE; St. Gallen, CH; Stark, US; Stavanger, NO; Stevenage, GB; 

Stoke-on-Trent, GB; Sunderland, GB; Swansea, GB; Swindon, GB; Tampa-

Hernando, US; Telford and Wrekin, GB; Terrebonne, US; Thanet, GB; 

Tilburg, NL; Torbay, GB; Trier, DE; Trieste, IT; Trondheim, NO; Turin, IT; 

Valenciennes, FR; Vasteras, SE; Venice, IT; Venlo, NL; Verona, IT; 

Verviers, BE; Vicenza, IT; Villingen-Schwenningen, DE; Volusia-Daytona 

Beach, US; Warrington, GB; Warsaw, PL; Washington (MD), US; Waveney, 

UK; Weber, US; Wetzlar, DE; Wichita, US; Wilhelmshaven, DE; Windsor, 

CA; Winterthur, CH; Worcester, GB; Worthing, GB; Wycombe, UK; 

Yamagata, JP; Yellowstone, US; Zwolle, NL; s-Hertogenbosch, NL 

4 (hidden to leader) 

Arhus, DK; Arnhem, NL; Athens, GR; Auckland, NZ; Barcelona, ES; 

Bedford, GB; Bordeaux, FR; Breda, NL; Brown, US; Cass, US; Centre, US; 

Cheshire West and Chester, GB; Clermont-Ferrand, FR; Dalseong, KR; 

Douglas (KS), US; Douglas (NE), US; Edinburgh, GB; Escambia, US; Fukui, 

JP; Giessen, DE; Gimhae, KR; Greater Adelaide, AU; Greater Brisbane, AU; 

Greater Perth, AU; Groningen, NL; Halle an der Saale, DE; Hamilton, CA; 

Indian River, US; Johnson, US; Kanazawa, JP; Kingston upon Hull, GB; 

Krefeld, DE; Lane, US; Leipzig, DE; Liege, BE; Lubbock, US; Lugano, CH; 

Magdeburg, DE; Marseille, FR; Memphis, US; Mexico City, MX; 

Minnehaha, US; Monroe (IN), US; Muenster, DE; Mulhouse, FR; Nancy, 
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FR; Nantes, FR; Newcastle upon Tyne, GB; Oldenburg (Oldenburg), DE; 

Orleans, FR; Outagamie, US; Parma, IT; Pulaski, US; Quebec, CA; Reims, 

FR; Rock, US; Rostock, DE; Saanich, CA; Salzburg, AT; Santiago, CL; 

Stanislaus, US; Tours, FR; Turku, FI; Wakayama, JP; Weld, US; Winnipeg, 

CA; NA 

5 (niche leaders) 

Abbotsford, CA; Akita, JP; Alkmaar, NL; Aomori, JP; Apeldoorn, NL; 

Asahikawa, JP; Ashikaga, JP; Australian Capital Territory, AU; Avignon, 

FR; Bielefeld, DE; Bracknell Forest, GB; Bremerhaven, DE; Bruges, BE; 

Butte, US; Caddo, US; Christchurch, NZ; Colmar, FR; Deventer, NL; Dijon, 

FR; Gold Coast, AU; Hachinohe, JP; Hakodate, JP; Halifax, CA; Hamilton, 

NZ; Hidalgo, US; Innsbruck, AT; Jefferson (TX), US; Jyvaskyla, FI; 

Kagoshima, JP; Kankakee, US; Kochi, JP; Kurume, JP; Lahti, FI; Las 

Cruces, US; London, CA; Luneburg, DE; Marburg, DE; Marion (OR), US; 

Marugame, JP; McLean, US; Mechelen, BE; Merced, US; Middlesbrough, 

GB; Miyazaki, JP; Modena, IT; Mons, BE; Morioka, JP; Nagasaki, JP; Naha, 

JP; Namur, BE; Naples, IT; Niigata, JP; Nijmegen, NL; Novara, IT; Odense, 

DK; Omuta, JP; Oss, NL; Padua, IT; Pau, FR; Piacenza, IT; Poitiers, FR; 

Potter, US; Prague, CZ; Regina, CA; Roosendaal, NL; Sangamon, US; 

Shawnee, US; Sherbrooke, CA; Shimonoseki, JP; Sittard-Geleen, NL; St 

Catharines, CA; St. Lucie, US; Sutter, US; Tallahassee, US; Tampere, FI; 

Taylor, US; Thurston, US; Toyohashi, JP; Trois Rivieres, CA; Tuscaloosa, 

US; Ube, JP; Udine, IT; Umea, SE; Varese, IT; Woodbury, US; Yakima, US; 

Yonago, JP; York, GB; Yuma, US 

6 (declining bio-

regions) 

Ada, US; Albany, US; Atlanta, US; Austin, US; Boulder, US; Braunschweig-

Salzgitter Wolfsburg, DE; Brevard, US; Cambridge, GB; Charlotte, US; 

Columbus, US; Cuyahoga, US; Dallas, US; Darmstadt, DE; Denver, US; 

Detroit (Greater), US; Erie (NY), US; Frankfurt am Main, DE; Fuji, JP; 

Fujieda, JP; Greater Sydney, AU; Hamamatsu, JP; Hamburg, DE; Hanover, 

DE; Hartford, US; Heidelberg, DE; Helsinki, FI; Higashiosaka, JP; Himeji, 

JP; Hiroshima, JP; Hitachi, JP; Houston, US; Jackson (MO), US; Jefferson 

(KY), US; Kitakyushu, JP; Larimer, US; Leeds, GB; Lehigh, US; London, 

GB; Los Angeles (Greater), US; Mainz, DE; Malmo, SE; Manchester, GB; 

Miami (Greater), US; Milan, IT; Milwaukee, US; Minneapolis, US; Mito, JP; 

Munich, DE; New Haven, US; New York (Greater), US; Numazu, JP; 

Onondaga, US; Orange, US; Ottawa, CA; Paris, FR; Peoria, US; Phoenix, 

US; Pittsburgh, US; Portland, US; Providence, US; Reading, GB; Rochester 

(NY), US; Ruhr, DE; Salt Lake, US; San Francisco (Greater), US; Seattle, 

US; Sendai, JP; Shizuoka, JP; Shunan, JP; Sonoma, US; Stockholm, SE; 

Stuttgart, DE; Summit, US; Takasaki, JP; Tokyo, JP; Toronto, CA; Toyota, 

JP; Tulsa, US; Ventura, US; Wake, US; Washtenaw, US; West Midlands 

urban area, GB; Worcester, US; Wuppertal, DE; Yokkaichi, JP 
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Figure A7: Regional population by cluster, average 2012 to 2014 
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Figure A8: Growth in the number of bioeconomy patents between period one (1982-1998) and period 

two (1999-2014) for the 30 technologies with the highest growth rates. 


