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ABSTRACT 
This study analyzes the current state of artificial intelligence (AI) technologies for addressing and 

mitigating climate change in the manufacturing sector and provides an outlook on future 

developments. The research is grounded in the concept of general-purpose technologies (GPTs), 

motivated by a still limited understanding of innovation patterns for this application context. To this 

end, we focus on global patenting activity between 2011 and 2023 (5,919 granted patents classified 

for “mitigation or adaptation against climate change” in the “production or processing of goods”). 

We examined time trends, applicant characteristics, and underlying technologies. A topic modeling 

analysis was performed to identify emerging themes from the unstructured textual data of the patent 

abstracts. This allowed the identification of six AI application domains. For each of them, we built a 

network analysis and ran growth trend and forecasting models. Our results show that patenting 

activities are mostly oriented toward improving the efficiency and reliability of manufacturing 

processes in five out of six identified domains (“predictive analytics”, “material sorting”, “defect 

detection”, “advanced robotics”, and “scheduling”). Instead, AI within the “resource optimization” 

domain relates to energy management, showing an interplay with other climate-related technologies. 

Our results also highlight interdependent innovations peculiar to each domain around core AI 

technologies. Forecasts show that the more specific technologies are within domains, the longer it 

will take for them to mature. From a practical standpoint, the study sheds light on the role of AI within 

the broader cleantech innovation landscape and urges policymakers to consider synergies. Managers 

can find information to define technology portfolios and alliances considering technological co-

evolution. 
 

Index Terms — artificial intelligence, AI, climate change, sustainability, patent analysis, technology 
foresight  
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1. Introduction 

Addressing climate change is at the top of policymakers’ agendas worldwide, and there are growing 

expectations of effective action [1]. The ever-increasing number of extreme weather events and the 

severe consequences of long-term alterations to weather patterns come with a spectrum of social 

challenges, economic instability, and adverse effects on food production and safety [2], [3], [4]. 

Together with more sustainable consumption patterns, an important factor to minimize–and 

potentially offset–the environmental impact of anthropic activities is technology [5], [6]. Alongside 

new process technologies, materials, and solutions for carbon capture and storage, AI is being hailed 

for its transformative potential across different sectors [7]. 

Unlike other innovations with specific areas of application, AI is considered a general purpose 

technology because it exhibits characteristics that allow it to fundamentally transform various aspects 

of the economy and society [8], [9], [10]. Its ubiquity across sectors, fast-paced growth rate, and spill-

over effects have fueled significant expectations also concerning climate change [7], [11], [12]. 

However, despite the positive outlook, the actual development of AI solutions to address climate 

change remains an element of academic and industrial conjecture [13]. This uncertainty leads to three 

main issues. First, when considering the investments needed to develop AI, organizations struggle to 

determine where to direct their efforts due to a limited understanding of the current progress and 

innovation dynamics [14], [15]. Second, on the adoption side, firms are faced with a limited 

awareness of emerging technological trajectories, which makes it challenging for them to explore and 

experiment with AI [16]. Third, policymakers lack a comprehensive dashboard to inform their 

actions, such as allocating budgets and providing financial incentives for firms [17]. This shortfall 

extends to their ability to verify the effectiveness of initiatives aimed at sustaining a green and digital 

transition [18], [19]. 

When analyzing the technological landscape of a GPT, it is important to focus on the interplay 

between a core technology stack and the innovations being developed within application sectors, 

which are often remote and difficult to coordinate [20]. With respect to AI, the picture is rather clear 

in the consumer sector [21], [10], whereas others have received comparatively less attention. This is 

problematic because there might be sector-specific trajectories, as technology development is 

normally dispersed throughout the economy, requiring tailoring of innovation programs and 

incentives [20]. Further specificities might emerge in technology developed for addressing or 

mitigating climate change due to complexities and interdependencies [22]. Research on the actual 



innovation landscape in this respect is needed to balance the risk of unjustified techno-optimism with 

actual evidence, thus providing substantiated input to climate policy.  

The aim of this study is to answer the following research questions (RQs):  

RQ1. What are the characteristics of the innovation landscape with respect to AI applications for 

climate change mitigation and adaptation in manufacturing?  

RQ2. What is the evolution over time of such applications? 

We place manufacturing at the center of our inquiry for two reasons. First, according to recent data 

provided by the World Economic Forum (WEF) [23] and the United Nations (UN) [24], 

manufacturing activities represent a major cause of climate change. Beyond the significant emissions 

of greenhouse gases (23% of the total – [23]), industries involved in goods production contribute to 

the unsustainable consumption of natural resources: their extensive use of water, raw materials, and 

energy depletes the Earth’s natural reserves and leads to ecological imbalances [25]. The burden is 

compounded by the waste generated by these activities [26]. Second, environmental sustainability in 

manufacturing is increasingly at the forefront of global discourse, largely driven by pressing 

consumer and stakeholder demands [27], [28]. Despite mounting expectations, however, the 

development of AI solutions to address climate change in manufacturing is still an unexplored area 

in the literature [11]. Moreover, available and upcoming AI applications for manufacturing might not 

match current expectations, an aspect echoed by Nishant et al. [29], who observed that the ambitious 

promises of cutting-edge technologies often fail to fully materialize in tangible applications. 

Through an in-depth patent analysis of AI solutions to address climate change in manufacturing (a 

population of 5,919 patents granted worldwide between 2011 and 2023), we were able to provide an 

evidence-based understanding of the state-of-the-art, past evolution, and future trends of AI in this 

context. A patent analysis goes indeed a step further than academic reviews: it provides a systematic 

overview of real-world trends, including technological interdependencies, main players, and 

evolution [17], [30]. As a result, patent analysis enables a more precise portrait of how technology is 

being practically developed [31], [32]. The analysis was built using several techniques including 

descriptive statistics, topic modeling, network analysis, and growth trend and forecasting models. The 

results highlight a significant growth in the number of patents and different innovator profiles in terms 

of country (e.g., China stands out as the leading country in terms of patenting activity) as well as of 

individual organizations (e.g., specialized vs. broad portfolio players). Six main application domains 



emerge from the data: predictive analytics, material sorting, defect detection, advanced robotics, 

scheduling, and resource optimization. As can be expected for a GPT [33], [34], these domains build 

on the combination of a set of core International Patent Classification (IPC) codes together with 

specialized technologies and are characterized by a diverse and staggered progression toward 

maturity.  

By moving beyond speculation, the study helps to illuminate the actual domains of AI 

development. Our main contribution is to temper the hype around AI with an evidence-based 

assessment [35], [36]. This is crucial for effectively bridging the gap between expectations and actual 

advancements, gaining valuable insights about “the real meaning and functionality” of AI [37]. A 

clear understanding of the research and development (R&D) arena can also help to assess the 

influence of specific knowledge interactions, providing a foundation for identifying how 

collaborative efforts between academia, industry, and policymakers can accelerate the integration of 

AI in manufacturing for sustainability [38], [39]. The findings contribute to the academic discourse 

on AI as a GPT and hold practical implications for industry stakeholders, offering a nuanced 

understanding of technological trends crucial for addressing climate change challenges. This could 

help both researchers and managers in directing further investigations and R&D activities at the 

crossroads between AI and sustainability.  

The rest of this article is organized as follows. The next section presents AI and its implications 

for climate change. Section 3 illustrates the methodology. Section 4 and Section 5 present and discuss 

the findings. To conclude, Section 6 outlines the contributions and limitations of the study. 

 

2. Background 

2.1. AI as a GPT 

Defined as “[…] mechanisms underlying thought and intelligent behavior and their embodiment in 

machines” [40], AI represents the pinnacle of computational technology’s quest to mimic and 

potentially surpass human intelligence. It encompasses a wide range of capabilities, from learning 

and reasoning to problem-solving and language comprehension [41]. Since the concept of AI was 

first introduced to the public in the 1950s, its history has been characterized by waves of excitement 

and periods of disillusionment [42]. Recently, the interest in AI has increased, driven by the release 

of generative tools for non-technical users (e.g., ChatGPT – [43], [44]). AI can efficiently and 

effectively process large data sets and make sense of unstructured data, also working in real-time 



[45], [46]. This results in data-driven insights in support of managerial decision-making as well as in 

the automation of several tasks [47]. The ability to process and analyze information at such a scale 

enables AI to unravel complex patterns and promises to revolutionize fields such as medicine, 

financial services, urban planning, agriculture, education, energy, and manufacturing [11], [48], [49]. 

Forecasts show an ever-increasing penetration of AI across these domains. For example, the global 

adoption of AI by organizations is expected to grow by 40% between 2023 and 2030 [50], with four 

out of five companies considering it a top priority in their business strategy [51].  

AI is increasingly recognized as a GPT [21], [10], [52]. Prior examples of GPTs include the steam 

engine, electricity, and computing technologies, which are well-established examples of technologies 

with a radical impact on human history [20]. According to Jovanovic and Rousseau [53], GPTs have 

three main characteristics: pervasiveness across industrial sectors and in society, technological 

dynamism leading to steady performance improvement, and innovation spawning new products and 

processes. When considering AI, current research recognizes its wide range of applications in relation 

to data processing for predictive purposes, the augmentation of human tasks, and the automation of 

activities [54]. Moreover, as seen for digital transformation with respect to prior-generation 

computing and information systems, AI’s general applicability is enhanced by its non-rival nature 

against existing technologies, which supports a comparatively faster growth in the number of new 

users than is observed for physical GPTs [55]. 

In general, the literature has shown the presence of a “productivity paradox” in relation to GPTs 

[8], [9], [34]. On the one hand, these technologies come with the promise of substantial improvements 

in products and processes alike, fueling expectations about positive impacts on economic growth. On 

the other hand, aggregated statistics hardly show any productivity improvement in the short term, as 

GPTs often enter established socio-technical systems characterized by complementary technologies, 

infrastructures, and (inter)organizational practices and routines. These aspects have only partially 

been considered insofar as, by and large, AI has entered into already digitalized domains, with the 

most innovative applications being developed in the consumer sector [21]. Under these 

circumstances, the need for organizational adjustments and visibility into system-level implications 

was lower, as AI development was driven by technology giants in the Internet space [10]. 

However, as AI spreads across application sectors, it is increasingly important to investigate 

technological and non-technological interdependencies. Indeed, recent surveys [56], [57], [58] report 



that the transition to AI in manufacturing is fraught with several critical concerns. First, some 

drawbacks stem from the need to integrate a wide range of protocols: achieving a seamless and 

efficient fusion of these disparate systems that are often crafted independently necessitates relevant 

standardization and synchronization efforts [59], [60]. Second, AI tools gather and process data from 

an extensive array of sources, including legacy equipment, resulting in significant issues in terms of 

communication technologies [61]. Third, the sophistication required for high-end AI applications 

needs high computing power. Even with recent advancements in microcontrollers/microprocessors 

and decreasing computational costs, this remains a considerable barrier to the actual development of 

AI solutions [45]. 

Against the promise and current challenges of AI, several policy efforts aim at closing the gap 

between potential and reality (e.g., [62]). Relevant examples include the European Union, which 

plans annual investments of about €1 billion through the Horizon Europe and Digital Europe 

programs, plus another €134 billion from the Recovery and Resilience Facility earmarked for digital 

initiatives [63]; the U.S. government’s effort of $3 billion in 2024 [64]; China’s New Generation AI 

Development Plan [65], which aims to build indigenous capabilities and encourage its technology 

companies to expand abroad; and Japan’s outlay of about $1.5 billion to promote advances in 

generative AI and the creation of supercomputers [66]. Similarly, private investments are steadily 

increasing [67]. These include foundational models, edge AI applications, automation, and smart 

functionalities. Involved firms are large software houses and technology giants as well as fast-

growing startups. 

Alongside actions generally meant to increase the viability of AI, it is important to acknowledge 

that different contexts have their own specificities in the journey toward the productive adoption of 

AI. In this respect, the literature on GPTs highlights the presence of positive feedback loops between 

improvement in core technologies and complementary innovation in application sectors; however, 

these dynamics have mostly been observed in the consumer sector, where large innovators in the 

Internet industry have led the development of actual applications and captured related value [21], 

[10]. Research on innovation dynamics is nevertheless still scant, especially when considering 

technologies for the industrial space [52]. 

 

2.2. AI for climate change in manufacturing 



Among the several potential transformative impacts of AI, there are growing expectations around its 

role in mitigating the impact of human activities on climate change [6], [48]. Academic literature, 

industry reports, and policy documents highlight a variety of areas: promoting informed decision-

making in environmental-social-governance (ESG) investments, leveraging satellite images for 

environmental surveillance, tracking crop health to reduce pesticide usage, resorting to predictive 

models to prevent deforestation and promote biodiversity conservation, enhancing renewable energy 

production and grid management, allowing energy-efficient building design and retrofitting while 

also controlling their heating systems, forecasting vehicle emissions and optimizing transportation, 

and improving carbon sequestration and storage processes [7], [13], [68], [69]. 

When considering manufacturing, AI technology has been related to a reduction in the 

environmental footprint of internal and supply chain (SC) operations. Within production plants, AI 

can optimize the use of resources and energy, for example through intelligent control of machine 

operating parameters [70], [71]. Moreover, intelligent systems enhance operational oversight, 

enabling the introduction of practices such as real-time monitoring and predictive maintenance that 

might extend the lifespan of machinery and reduce the need for new equipment [72]. At the SC level, 

AI can support alignment and control beyond first-tier relationships, thanks to predictive models and 

integration with diverse sources of information [73]. Data-driven systems might optimize inventory 

levels and minimize excess production, thus avoiding unnecessary resource utilization [6], [74]. AI 

is also seen as an enabler of material recycling and circular loops, especially considering solutions 

for green product design that facilitate end-of-life handling [61]. Lastly, AI may support companies’ 

adaptation to new climate-related challenges, for example by predicting possible SC disruptions due 

to extreme events and promoting autonomous adjustments [75]. 

So far, evidence from adopting AI solutions in manufacturing operations and SC activities mostly 

testifies to a positive impact on sustainability. Case studies show that AI can optimize energy 

consumption and reduce defects during production, thus driving savings and reducing the 

environmental footprint [76], [77], [78]. At the SC level, some surveys have shown that the 

technology might improve sustainability through process flexibility and the circular economy [79], 

[80], [81]. However, other studies have found AI not to be related to a higher adoption of sustainable 

manufacturing practices [82] and contest that there is a still too low penetration of AI to draw 

conclusions [83]. Further, the literature indicates that AI can deliver positive impacts if adopted 



together with complementary technologies for digital transformation in manufacturing operations and 

beyond (e.g., the Internet of Things and advanced robotics, electric vehicles, renewable energy 

technologies – [49], [84], [85]). On balance, it seems increasingly important to overcome techno-

optimism when considering the potential of AI for climate change in manufacturing. 

As testified by recent discussions at the 28th Conference of the Parties to the United Nations 

Framework Convention on Climate Change (COP 28, November–December 2023) [86], the 

development of AI solutions for climate change entails significant challenges on top of those 

generally related to the technology itself. These are essentially connected with the time and scope of 

action. On the one hand, the current decade is seen as crucial to keeping the climate at bay, so that 

there is an unprecedented urgency around the development of viable technologies (e.g., [18], [87]). 

On the other hand, the complexities of the issues to be tackled require broad cross-sectoral 

collaborations and the integration of diverse expertise across the technological, business, and 

environmental domains [88]. This not only implies the need to mobilize consistent financial resources 

and engage specialist knowledge but also calls for transparency on progress and results [89]. 

Moreover, it is important to consider tradeoffs, which include energy requirements, infrastructural 

upgrading, and the risk of augmenting the penalties for those areas in the world that, while lagging 

behind in terms of digitalization, are also the most affected by current alterations in climate patterns 

[90], [91].  

Whereas the potential and challenges of developing AI for climate change are starting to attract 

academic interest in prominent managerial outlets (e.g., [11], [58], [92]), there are still few studies 

that provide evidence-based considerations. Specifically, several articles concern technical 

applications and decision-making tools (e.g., [93], [94); however, research has still not investigated 

some core questions that would support managers and policymakers to delineate plans to address the 

aforementioned challenges. Among these questions, the lack of a clear picture of the current and 

likely evolution of the AI innovation landscape in manufacturing where climate change is concerned 

is a major research gap that needs to be tackled given the array of stakeholders involved, each playing 

a different role in this initial deployment phase, and the level of uncertainty that characterizes the 

technology at this stage. Theoretically, such an effort can illuminate the interplay between a 

technology commonly recognized as a GPT and a specific context in terms of application sector 

(manufacturing) and scope (climate change). There is indeed a need to clarify the unfolding of digital 



GPTs when innovation loops involve hardware technologies, as is the case with manufacturing, 

insofar as AI expands toward broad-range applications [21]. The presence of a specific problem 

potentially stimulating technological innovation constitutes a further element of interest [95], [96]. 

 

3. Methodology 

A patent analysis was conducted to provide a systematic overview of the current state and 

evolutionary trends concerning the development of AI solutions for climate change mitigation and 

adaptation in manufacturing. Patents serve as a comprehensive repository of knowledge, containing 

not only the specifics and characteristics of inventions but also relevant information about inventors, 

applicants, filing dates, and geographic origin [16], [97]. This makes them particularly helpful in 

understanding the development status at different levels, from individual organizations to industries 

and economies at large [14]. Patent analysis illuminates trends and facilitates the understanding of 

how different technologies converge and evolve [39]. Moreover, it can assist in decision-making 

processes, particularly in the realms of R&D planning and innovation policies [32]. 

Even though as a software innovation AI might be less apt to be patented and subject to open-

source development efforts, prior patent analyses in the context of AI testify to the suitability of this 

approach [38], [98], [99]. This is motivated by a different attitude toward the protection of software 

innovation since the early 2000s. Indeed, there has been a rising awareness of the pivotal role that 

patents play in improving a company’s market value [100]; firms now consider patents as an essential 

part of their business strategies and use them both as defensive instruments and as negotiation tools. 

Overall, patenting inventions has become a fairly common practice for companies, regardless of the 

domain [101]. With respect to AI, there have been significant regulatory efforts to establish strong 

protection of AI-related intellectual property (IP) rights, which is seen as a precondition to boosting 

investments in the field [102]. Moreover, patenting software innovation is historically a common 

practice for manufacturing-related applications [103], [104]. 

When developing a large-scale patent analysis, there are several challenges to consider that are 

inherent to their nature as legal documents. Advanced methods such as machine learning, data mining, 

and statistical analysis are used to extract and interpret the dense and complex knowledge they 

contain, sifting through the vast amounts of raw data to gather meaningful insights. Our study follows 

the example and methodological guidelines of prior research (e.g., [14], [17], [32], [105], [106], 



[107]). The approach, which is based on different techniques, is outlined in Fig. 1 and illustrated in 

greater detail in the following paragraphs. 

–––––––––––––––INSERT FIG. 1 APPROXIMATELY HERE––––––––––––––– 
 

3.1. Data collection 

We started our data collection process with the database selection. Patent information was obtained 

from “The Lens” (https://www.lens.org/). This is a freely available platform covering all major patent 

offices worldwide [108], [109] and has been widely used in previous research (e.g., [110], [111]). 

In terms of search string formulation and time span definition, our search strategy included both 

keywords and technology codes [22]. For AI, we followed the recommendations of the World 

Intellectual Property Organization (WIPO) [112], which provides comprehensive guidelines (i.e., a 

list of keywords and technology codes) for identifying AI-related innovations and thereby facilitates 

the selection of relevant technological classes and terms. Specifically, the WIPO [112] guidelines are 

designed to achieve a tradeoff between precision and recall. In this perspective, they include the 

following AI techniques: logic programming, fuzzy logic, probabilistic reasoning, ontology 

engineering, machine learning, and search methods. Functional applications such as large language 

modeling (LLM) and generative AI are also encompassed.  

For the sustainability component, we relied on the recommendations of the Organization for 

Economic Cooperation and Development (OECD) [113], [114]. The OECD framework classifies 

patents related to “mitigation or adaptation against climate change” by field of application [115]; 

given our focus on manufacturing, we selected those related to the “production or processing of 

goods”. With this approach, we did not set any boundaries and considered the whole manufacturing 

industry (NACE codes 10–33).  

The two parts of the resulting query were combined using the “AND” operator (see [112], [113] 

for the complete list of keywords and technology codes). The search targeted patents granted from 

2011 to November 2023 (the date the search was conducted). The starting year is justified taking into 

account the emergence of digitalization and related concepts [36], [42]. To avoid double counting, 

patents were considered at the family level [32]. 

To conclude, the following screening process was performed. The abstract of each patent was 

independently reviewed by two authors to ensure consistency with our study objectives (e.g., we 

removed some patents related to drug development, animal breeding, and agriculture). In cases where 

there was further uncertainty (e.g., regarding the adopted AI technique), the full text of the patent was 



considered and an external expert (a researcher in the field of computer sciences specialized in AI) 

was also involved. This process resulted in the identification of 5,919 patents (i.e., the population of 

patents related to the use of AI in manufacturing to address climate change issues). 

 

3.2. Analyzing the current state (RQ1) 

To shed light on characteristics of the innovation landscape with respect to AI applications for climate 

change mitigation and adaptation in manufacturing, the following analyses were conducted. 

First, we ran some descriptive statistics aimed at providing an overview of the topic. In line with 

previous contributions (e.g., [17], [16], [31]), we considered the following variables (see Table AI in 

the Online Appendix for more details): annual number of patents granted and growth rate, number of 

patents by priority country, number of patents related to the top 20 applicants and average family 

size, and number of patents related to the top 20 technologies (IPC codes). Moreover, we also 

provided information on the top 20 technologies (IPC codes) employed by the top 20 applicants (e.g., 

[17]). 

Second, we performed a topic modeling analysis to identify the main application domains of AI 

solutions for climate change mitigation and adaptation in manufacturing. Specifically, we analyzed 

the collected patents by deploying the latent Dirichlet allocation (LDA) technique (i.e., an 

unsupervised machine learning approach) [18], [105], [116], [117]. The core concept of LDA is that 

documents consist of a mixture of underlying topics, where each topic is defined by a specific 

probability distribution of words. LDA enables the discovery of these hidden structures by analyzing 

the co-occurrence and frequency of words, thereby categorizing documents according to the latent 

thematic patterns embedded in the text (see [18], [105], [116] for more details). Previous usage of 

LDA to identify patent application domains can be found, among others, in Ghaffari et al. [105], Kang 

et al. [18], and Hu et al. [118]. LDA was performed on abstracts, as they provide information on the 

main technical content and application domain [105], [118], [119]. 

A major challenge in performing LDA is text cleaning [120]. The texts of the abstracts should be 

transformed into homogeneous meaningful words whose repetition and aggregation indicate a 

domain of application. The cleaning process involved several steps [105], [121]: tokenization, 

lemmatization, removal of high-frequency stop words, conversion of uppercase letters to lowercase, 

conversion of numbers to letters, and removal of special characters such as punctuation. In addition, 

custom stop words that appeared frequently in our patents but did not have a specific meaning were 



removed (e.g., “first”, “second”, “third”, “method”, “system”, “application”, “unit”, “input”, 

“embodiment”, “technology”, “apparatus”, “device”, “invention”, “target”, “algorithm”, “data”) 

[122], [123].  

To select the appropriate number of topics, we explored a range from 2 to 15 and considered the 

coherence score (i.e., a measure that reflects the quality of the analysis by comparing the semantic 

similarity between highly repetitive words in a topic – [105], [124]). The highest coherence score was 

0.58 and was obtained with 6 topics; this value is in line with similar studies (e.g., [105]). Each patent 

was assigned to the topic with the highest calculated probability using topic distribution. Additionally, 

the most frequent words in each topic were printed to facilitate interpretation and understanding of 

the results. The entire process was conducted using Python 3.12.0 software. In line with Ghaffari et 

al. [105], the LDA was implemented by Gensim library with the following values: random state = 

100 to ensure reproducibility of the results, chunk-size = 1000 to control for the number of documents 

processed at a time, and passes = 70 to define the number of iterations over the entire corpus. The 

alpha and eta parameters were set to “auto” to allow the model to optimize them during training [125], 

[126]). The robustness of the results was confirmed by experimenting with different parameter values; 

these variations yielded consistent and stable topics, demonstrating the reliability of the chosen 

approach. 

To conclude, in line with Su et al. [32], Lee et al. [127], Son and Cho [128], and Block and Song 

[39], the IPC network analysis was carried out to reveal the different technologies underlying each 

topic. The approach allowed us to identify the defining features of our network models, determine 

technology convergence, and observe the structural characteristics of innovation in the domain [32], 

[128], [129], [130]. The network analysis was performed on the IPC codes of the patents belonging 

to the six domains identified with the topic modeling. We constructed a two-dimensional matrix 

containing all patents and their IPCs. This was transformed into a one-dimensional IPC x IPC matrix, 

which was then converted into a network. Gephi 0.10.1 software was used to draw the network 

diagram, with each node representing a technology area (IPC code) and the (undirected) edges 

indicating whether a patent exists between nodes (IPC codes) “A” and “B”. On these data, the 

following indicators were used (e.g., [32], [105], [107], [131], [132]): degree centrality, which 

indicates the importance and influence of the technology (node) in the network; betweenness 



centrality, which expresses whether a node occupies a structurally central position in the network 

(i.e., is a bridge in the network); and graph density, which measures how connected the graph is. 

 

3.3. Examining time evolution and forecasting future trends (RQ2) 

To analyze development trends of AI solutions for climate change mitigation and adaptation in 

manufacturing, we first reiterated the IPC network analysis for two time intervals to examine the 

past evolution of technologies underlying each topic.  

Then, we performed a growth trend and forecasting analysis of the number of patents for each of 

the six domains; previous adoption of this approach can be found, among others in Jiang et al. [14], 

Su et al. [32], Coccia and Roshani [133]. We began from the widely accepted premise that a 

technology life cycle typically takes the form of an S-shaped curve with four stages, namely birth, 

growth, maturity, and saturation [32], [133], [134], [135]. The most used models to describe this S-

shaped pattern are the Logistic, Gompertz, and Richards ones (e.g., [14], [136], [137]). The logistic 

model is renowned for its simplicity and effectiveness. The Gompertz model is often preferred for its 

accuracy in capturing the early stages of growth, particularly in cases with a slow initial uptake and 

rapid later growth. The Richards model is an extension of the Logistic one and allows for greater 

flexibility in representing the growth curve, making it suitable for a wider range of technology 

adoption patterns (see [14], [32], [134], [137], [138] for a detailed description of these models). 

We considered the cumulative number of patents and analyzed the data by dividing the period into 

six-month intervals [32]. Since data collection was conducted in November 2023, we used data up to 

the first half of 2023. Consistent with Jiang et al. [14], we applied the logistic, Gompertz, and Richards 

models using the Loglet 4 software. For the Logistic and Gompertz models, this tool considers three 

parameters: saturation (the estimated maximum number of patents filed over time), growth time (the 

time taken for the technology to pass through the growth stage and reach maturity), and the midpoint 

(the exact point at which the growth trend enters the maturity stage). For the Richards model, a fourth 

parameter is added: the shape (which accounts for the curvature of the growth model) [139]. These 

parameters were estimated using a Monte Carlo annealing over a genetic algorithm.  

As stated before, each model has distinct characteristics and is better suited to capturing different 

growth patterns and stages of technology development [14], [133], [137]. To select the model that 

best fits each case, we considered the values of mean absolute percentage error (MAPE) and R² [32]. 

In cases where there were discrepancies between these two measures, we preferred the model with 



the best MAPE value rather than R². This is because while R² refers to the explanatory power of the 

model, MAPE focuses on forecast error, making it more meaningful for our purposes [140]. 

 

4. Results 

4.1. The current state of AI for climate change in manufacturing (RQ1) 

Starting with the descriptive statistics, Fig. 2 shows a clear upward trend in the annual number of 

patents related to AI solutions to address climate change in manufacturing. The average number is 

still low until 2021 (98.36 yearly), sharply increasing in 2022 and 2023 (until November, with a 

growth rate of 119.70% since the previous year). This rise can be attributed to three main factors. 

First, as is common for GPTs, AI is characterized by increasing maturity and applicability [9], [44]. 

Second, the related technology stack is also rapidly evolving, so that there has been a remarkable 

growth in computing power and data processing capabilities, which has expanded the development 

of solutions [21], [71]. Third, there are growing institutional pressures to invest in green technologies, 

which also direct private efforts in the field of AI [141]. 

–––––––––––––––INSERT FIG. 2 APPROXIMATELY HERE––––––––––––––– 

In terms of geographical distribution (Fig. 3), 78% (4,629) of patents originate from China, 

followed far behind by the United States (10%, 603), South Korea (5%, 286), and Japan (4%, 218). 

This trend is clearly correlated with the fact that since the early 2010s Chinese policies incentivize 

organizations that demonstrate technological innovation through patent filings [142]. 

–––––––––––––––INSERT FIG. 3 APPROXIMATELY HERE––––––––––––––– 

Consequently, Table I shows the dominance of Chinese applicant organizations, particularly 

universities. This also reflects the country’s strategic efforts to foster innovation through public 

funding [143]. In contrast, the landscape in the United States, and to some extent in Europe, leans 

heavily on major corporate players such as IBM, Rockwell Automation, and Siemens. These 

companies are representative of a model of innovation driven by industry and technology giants [144], 

[145]. Interestingly, US players such as Google, Amazon, and Microsoft, despite their prominence in 

general AI development [146], [147], [148], seem not to have invested in AI applications that are 

specifically devoted to addressing climate change in manufacturing. This is an intriguing aspect, 

especially when considering their expansive reach and influence in broader technological contexts. 

Moreover, the “Average family size”1 metric unveils the breadth of patenting efforts [149]. 

 
1A patent family includes all the patents filed across different countries that are related to the same invention. Thus, the 
family size serves as an indicator of the geographical breadth of a patent applicant’s filing strategy [152]. 



Applicants with larger family sizes (e.g., Fanuc and Siemens) pursue an extensive international reach 

in their filing strategy, contrasting with the more localized focus of Chinese universities. This 

diversity can be indicative of a more varied innovation portfolio and points to different approaches in 

protecting intellectual property [17]. 

–––––––––––––––INSERT TABLE I APPROXIMATELY HERE––––––––––––––– 

Table II outlines the top 20 IPC codes along with their descriptions. The most important are related 

to Computational models (G06N) and Electric digital data processing (G06F). These categories 

represent the core capabilities of AI [150], [151]. Other IPC codes reflect a more specific focus, such 

as visualization technologies (Image or video recognition–G06V and Image data processing–G06T) 

or process automation (Control or regulating systems–G05B). Lastly, the presence of Manipulators 

(B25J) signals advancements in robotic systems. This is in line with the literature showing a 

significant use of AI together with advanced automating solutions [153], [154], [155]. 

–––––––––––––––INSERT TABLE II APPROXIMATELY HERE––––––––––––––– 

Table III shows the top 20 technologies (IPC codes) employed by the top 20 applicants. There is 

a mix of generalist players, organizations with targeted expertise, and companies with both general 

AI capabilities and specific knowledge. Each applicant tailors its approach either to particular aspects 

or to broad AI integration [17]. The Guangdong University of Technology, for instance, focuses on 

core AI computational models and data processing techniques (Computing arrangements–G06N and 

Digital data processing–G06F). Fanuc’s investment in Manipulators (B25J) highlights a 

specialization in robotics. Baidu covers areas such as ICT for administrative purposes (G06Q) and 

Image or video recognition (G06V), suggesting a versatile application of AI across different aspects. 

Universities such as Zhejiang University and South China University of Technology indicate a strong 

inclination to develop solutions for material testing and quality assurance (Material analysis–G01N). 

IBM, with investments in categories such as Digital data processing (G06F) and Control or regulating 

systems in general (G05B), integrates AI into a wide array of applications from core computing to 

specialized control systems. 

–––––––––––––––INSERT TABLE III APPROXIMATELY HERE––––––––––––––– 
 

The outcomes of the topic modeling analysis are presented in Table IV alongside the defining 

keywords emerging from the data analysis. The six categories reflect different fields of application 

within manufacturing. Finally, the IPC network analysis shows the technologies underlying the six 

application domains of AI by analyzing the IPC codes behind each patent. The results for each domain 



are reported in Table V and graphically represented in Fig. A1 (Online Appendix). In the following 

paragraphs, the findings are briefly commented for each field of application. 

–––––––––––––––INSERT TABLE IV APPROXIMATELY HERE––––––––––––––– 

–––––––––––––––INSERT TABLE V APPROXIMATELY HERE––––––––––––––– 

(1) Predictive analytics (1,434 patents – 24.23%): This topic underlines the key role of AI in tasks 

related to predictive maintenance and the control of process parameters. The patents 

underscore AI’s capability to analyze large amounts of data in real-time, enabling 

organizations to improve maintenance periods and anticipate equipment failures, significantly 

reducing unplanned downtime and extending machinery lifespans. These aspects lead to a 

decrease in energy consumption (idle time), water usage (equipment cooling and washing), 

and machine substitution rates. Furthermore, included patents show opportunities for fine-

tuning manufacturing processes to their most efficient settings, eliminating unnecessary power 

peaks and overproduction.  

Within this domain, the top five IPC codes by degree centrality (Programme-control systems– 

G05B19, Computer systems based on biological models–G06N3, ICT specially adapted for 

implementation of business processes of specific business sectors–G06Q50, ICT for 

Administration; Management–G06Q10, and Machine learning–G06N20) highlight a focus on 

modeling, data governance, and responsiveness, as well as the need to tailor analytics 

capabilities to context-specific requirements. The results also show an overlap in IPC codes 

between degree and betweenness centrality, suggesting their function as both enablers and 

links of different technological aspects in the domain. The presence of Adaptive control 

systems (G05B13) in the betweenness metric draws attention to the need to integrate various 

functionalities. The number of IPCs (i.e., nodes) (520) indicates a domain characterized by a 

wide range of technologies, whereas graph density (0.026) depicts a rather sparse network, 

suggesting the presence of many applications tailored to specific use cases.  

(2) Material sorting (1,195 patents – 20.19%): This topic concerns material identification and 

selection. AI-driven sorting systems can distinguish and accurately classify substances and 

components. The patents concern AI applications to correctly identify and use materials 

when/where they are most needed, while avoiding waste and scrap due to undetected problems 

with the initial inputs. AI applications also facilitate the incorporation of recycled materials 

into production processes. 



Within this domain, the top five IPC codes by degree centrality (Computer systems based on 

biological models–G06N3, Arrangements for image or video recognition or understanding–

G06V10, Image analysis–G06T7, Programme-control systems–G05B19, and Scenes; Scene-

specific elements–G06V20) highlight a core of complex modeling technologies and visual data 

processing/analysis. These IPC codes also rank among the top five for betweenness centrality, 

showing their relevance for the alignment of various image management and categorization 

capabilities. The total number of IPCs (307) and the graph density (0.038) show a domain 

with a diverse set of technologies that interconnect in a relatively sparse network, pointing to 

applications tailored to specific types of materials or tasks. 

(3) Defect detection (1,107 patents – 18.07%): This domain underscores the role of AI in 

identifying quality issues, detecting a wide range of defects from surface anomalies to 

structural inconsistencies. This can reduce the number of discarded items and facilitate the 

proactive identification of quality issues, significantly minimizing the environmental impact 

associated with withdrawing goods at a later stage.  

Here, the top five IPC codes by degree centrality (Computer systems based on biological 

models–G06N3, Image analysis–G06T7, Arrangements for image or video recognition or 

understanding–G06V10, Machine learning–G06N20, and Methods or arrangements 

for reading or recognizing printed or written characters or for recognizing patterns–G06K9) 

show the integration of modeling, surface analysis, and visual inspection technologies, 

enhanced by the capability to compare reality with established data formats and structures. 

Also in this case, the overlap of codes between degree and betweenness centrality showcases 

their significance as core technologies within this domain while also integrating the diverse 

capabilities required for defect detection. The high value of betweenness centrality for Pattern-

recognition (G06F18) underscores the relevance of technological capabilities to synthesize 

diverse data types and sources. By the number of IPCs (181), this domain appears to be 

characterized by a specialized concentration of technology areas. Graph density (0.063) 

indicates a denser network compared to other domains, reflecting the closer interconnection of 

technologies and core systems. 

(4) Advanced robotics (880 patents – 14.87%): This topic shows how AI can enhance robotic 

capabilities, enabling the execution of complex tasks. This leads to a dual benefit: first, it 



reduces the production of off-specification goods, cutting down on material wastage and 

consumption associated with rework. Second, it minimizes stress on the machine itself, thus 

mitigating wear and extending the equipment’s lifespan. Another implication stems from their 

adaptability, allowing companies to produce according to demand. When considering material 

handling and logistics, AI-enabled robotics streamline movement through smart routing, 

cutting down on the energy consumed.  

In this domain, the top five IPC codes by degree centrality (Control of position, course, 

altitude, or attitude of land, water, air, or space vehicles–G05D1, Programme-control systems– 

G05B19, Programme-controlled manipulators–B25J9, Navigation; Navigational instruments 

not provided for in groups– G01C21, and Traffic control systems for road vehicles–G08G1) 

combine elements of motion control and environmental awareness, which are required for 

robots to perform assigned tasks while also taking into account the conditions of the operating 

context. Among the codes with the highest betweenness centrality, the presence of Computer 

systems based on biological models (G06N3) and Speech recognition (G10L15) suggests that 

the nature of robotics operations demands the gathering and interpretation of data from several 

sources. The domain presents an intermediate number of IPCs (357) connected in a relatively 

sparse network, with a graph density of 0.044. This indicates a balance between the breadth 

and depth of technology development across different activities. 

(5)  Scheduling (768 patents – 12.98%): This topic reflects AI applications for synchronizing 

activities considering real-time parameters. This reduces the risk of producing more than 

necessary and improves load leveling across the shop floor, yielding reductions in bottlenecks 

and idle times with consequences on power consumption. 

Here, the top five IPC codes by degree centrality (Computer systems based on biological 

models–G06N3, Administration; Management–G06Q10, Systems or methods specially 

adapted for a specific business sector–G06Q50, Computer-aided design–G06F30, and 

Programme-control systems– G05B19) underscore the reliance on advanced computational 

techniques and data processing that need to be adapted to specific contexts. The consistency 

of codes with betweenness centrality provides further evidence of the key role of these IPCs 

in facilitating the convergence of different scheduling functions. The number of IPCs (163) 



shows that the domain is dependent on a limited number of specific technologies, whereas an 

intermediate value of graph density (0.055) reveals a moderate level of interconnection. 

(6) Resource optimization (535 patents – 9.04%): This domain covers AI’s applications for energy 

efficiency and resource management. Central to this domain is the ability to analyze and predict 

energy patterns, ensuring that energy-intensive tasks coincide with periods of high availability 

of renewable sources. In addition, applications extend to the management of complex systems 

such as central air conditioning to maximize energy efficiency. AI is also useful in identifying 

the most effective wastewater processing parameters, allowing for water purification and 

reuse. 

In this domain, the top five IPC codes by degree centrality (Computer systems based on 

biological models–G06N3, Systems or methods specially adapted for a specific business 

sector–G06Q50, Administration; Management–G06Q10, Programme-control systems– 

G05B19, and Circuit arrangements for ac mains or ac distribution networks–H02J3) show the 

need to develop solutions tailored to specific business needs. Moreover, the presence of codes 

related to electrical power control highlights the critical role of energy management solutions. 

While computational models and application-specific approaches emerge as top nodes in both 

degree and betweenness centrality, the presence of Investigating or analyzing materials by 

specific methods (G01N33) testifies to the relevance of material (e.g., water, gas, air, chemical 

substances) analysis capabilities. For what concerns the number of IPCs (292), the domain 

occupies an intermediate position in terms of technological diversity. These technologies are 

not extensively interconnected, as evidenced by the graph density (0.039). 

To summarize, the potential impact of AI manufacturing applications for climate change concerns 

developments to reduce material usage, enable material recycling, reduce energy consumption, 

reduce water consumption, and enable the use of renewable energy. Some impacts are specific to 

certain domains. With respect to the number of patents, (1) Predictive analytics and (2) Material 

sorting show the highest number of filings. The figure is lower for (5) Scheduling and (6) Resource 

optimization. This might be related to the market demand for such inventions [156], [157]. In the 

realm of sustainability, extant research shows that companies prefer solutions that not only strengthen 

environmental performance but also generate cost savings and efficiencies [158], [159]. Customer 

demands have likely guided the innovation endeavors of technology developers, leading them to 



focus their resources and efforts on domains with the highest attractiveness to the users [95], [96]. 

Finally, with respect to the outcomes of the IPC network analysis, alongside specific technologies, 

the results highlight the essential role of core technologies, such as Computer systems based on 

biological models and Machine learning. These serve as the backbone of AI applications, allowing 

for real-time or close to real-time data gathering, processing, and analysis. In this respect, there is 

evidence of interdependent innovation occurring between a main technology stack and domain-

specific technological applications, which is in line with evolutionary trajectories common for GPTs 

[20], [22]. The role of AI in stimulating innovation in other areas––such as robotics––is also evident 

and underscores its contribution to improving technologies for climate change [22]. 

 

4.2. The evolution of AI for climate change in manufacturing (RQ2) 

The IPC network analysis for time intervals (Table VI) considered two periods (2011–2021 and 

2022–2023) in line with the trend related to the annual number of patents (Fig. 2). The analysis shows 

that the relevance of many IPC codes remains unchanged, while their degree and betweenness 

centrality values are generally increasing. The only exception is in (4) Advanced robotics, where both 

the degree and betweenness values of the top nodes tend to decrease. This suggests weakening 

connections within the domain, possibly due to a shift toward a broader range of applications. 

Regarding network density, it is observed that it generally decreases over time. This indicates that 

while the number of technologies is growing, their interconnections are becoming sparser, reflecting 

a trend toward more specialized developments in manufacturing. 
 

–––––––––––––––INSERT TABLE VI APPROXIMATELY HERE––––––––––––––– 

Concerning growth trend and forecasting, the Logistic, Gompertz, and Richards models were 

used to understand the development trends of the six AI application domains [14], [137]. Each model 

has its own unique features, making it particularly effective at describing specific development 

patterns. For each domain, we therefore considered the forecasts of the model that best suits the data 

(taking into account the values of MAPE and R2). 

The results (Table VII) show that the Richards model performs better in describing the current and 

future diffusion trends of Predictive analytics, Defect detection, Scheduling, and Resource 

optimization (lowest MAPE and highest R2), while the Gompertz model fits better for Material sorting 

and Advanced robotics (lowest MAPE). Moreover, the values of R2 and MAPE are in line with 

previous studies (e.g., [14], [32], [138]); according to the Lewis scale [160], MAPE data depict a 



good/reasonable prediction. Table VII also shows that the F-tests for the considered models are all 

statistically significant, with p-values < 0.05. This further demonstrates that they are a good fit for 

describing AI-related patenting activity [41], [133]. The trends are graphically illustrated in Fig. 4. 

All domains are in the growth phase, with a current saturation level of approximately 30%. The 

projected saturation points––ranging from 2025 for (3) Defect detection to 2037 for (4) Advanced 

robotics––reveal a staggered progression toward technological maturity; while some seem to be 

rapidly approaching saturation, others are characterized by slower trajectories and a possible different 

focus in the coming years. These slightly different trajectories can be explained by the fact that the 

fast-moving domains could benefit from a synergy of more mature technological foundations, 

established R&D efforts, and robust market demand (e.g., [156], [161], [162]). On the other hand, 

domains with more gradual progress indicate underlying complexities [163], [164]. For instance, due 

to software and hardware interdependencies, several innovation feedback loops are needed before AI 

can be applied to more sophisticated automation processes, so that (4) Advanced robotics might 

capitalize on these advances only at a later stage. This sequence reflects a natural progression in 

technological evolution, where the growing maturity of data analysis and decision-making solutions 

precedes and potentially catalyzes the subsequent development of innovation in automation [16], 

[165].  

–––––––––––––––INSERT FIG. 4 APPROXIMATELY HERE––––––––––––––– 

–––––––––––––––INSERT TABLE VII APPROXIMATELY HERE––––––––––––––– 

5. Discussion 

The aim of this study was to provide a systematic analysis of real-world trends concerning the 

development of AI solutions for climate change mitigation and adaptation in manufacturing. In this 

section, we present the key messages emerging from our findings and discuss them against prior 

literature. In Fig. 5, we provide a summary framework building on the results of topic modeling, IPC 

network analysis, and future trend prediction. Starting from a set of core IPC codes that constitute the 

basis of AI, these are combined with specialized technologies in order to apply AI to six different 

domains of manufacturing. Except for (6) Resource optimization, each application domain is 

characterized by primary operational impacts (i.e., cost, quality, time, flexibility), which impact only 

indirectly objectives related to mitigating the impact of manufacturing on the environment (e.g., 

reduce material usage, enable material recycling). In (6) Resource optimization, instead, it appears 

that growing pressures toward recycling and using renewable sources are fostering the development 



of AI solutions, allowing more cost-efficient processes. It also appears that most patenting efforts so 

far have focused on applications to increase manufacturing sustainability, rather than AI solutions for 

climate adaptation. This result is in line with prior studies on AI innovation for climate change and 

reflects most of the current views on AI in manufacturing [22], [166], [167]. Although all six AI 

application domains are currently in the growth phase, they are characterized by different paths 

toward saturation.  

–––––––––––––––INSERT FIG. 5 APPROXIMATELY HERE––––––––––––––– 

Looking at our findings through the lens of GPT, some considerations emerge from our analysis. 

First, the development of AI solutions to address climate change in manufacturing requires core and 

specialized efforts. The results show the importance of integrating the development of AI at various 

levels, building on core technologies to advance with specialized solutions concerning single 

application domains (Section 4.1). This integration is critical considering the complex requirements 

of manufacturing and the parallel evolutions of related hardware and software technologies [16], [37], 

[97] and seems coherent with the concept of GPT loops (i.e., feedback loops developed through co-

invention determining innovation in both core technology and application sectors) [21]. Similarly, 

our results show that AI is indeed formed by a technology stack involving a number of AI-related 

GPTs (as shown by the presence of multiple IPCs among core technologies in Fig. 5). The interplay 

between AI innovation pathways and those of other technologies related to digital transformation in 

manufacturing (e.g., advanced robotics) and climate tech solutions (e.g., energy management) is also 

emerging from our analysis. This dynamic goes beyond the conventional understanding of GPT-

related innovation complementarities [20], [53]: when considering AI for climate change, our 

findings show that complementarities not only involve downstream application sectors but also other 

major technological fields related to automation/digitalization and decarbonization that might display 

features of GPTs [22]. 

Second, the development of AI for climate change in manufacturing presents various and 

interdependent evolutionary trends. Looking backward, the analysis underlines a growing number of 

technologies whereby interconnections are becoming sparser, suggesting increasing specialization. 

The forecasts proposed by the Gompertz and Richards curves for the six AI application domains show 

different maturation timelines (Section 4.2), ranging from the imminent saturation of defect detection 

(2025) to the later development of advanced robotics (2037). Moreover, it is relevant to note that 



advancements in some domains and core technologies (i.e., those related to data processing and 

analytics) appear as a precondition for the development of more advanced solutions in other domains 

(i.e., automation for Advanced robotics). This again underlines the interplay of innovation loops 

between a GPT core technology stack and application domains [21], indicating, moreover, 

evolutionary trajectories that are specific to clusters of applications within a sector. 

Third, operational performance and climate change mitigation/adaptation are intertwined 

objectives when developing AI for manufacturing applications. The topic modeling analysis (Section 

4.1) depicts a context in which the prevalence of patents for specific domains reflects market demands 

for solutions that ensure higher operational performance. Domains such as Predictive analytics, 

Material sorting, and Advanced robotics are widely recognized for their role in enhancing operational 

efficiency [168], [169], rather than for their contribution to environmental sustainability. In other 

words, AI is mainly used for productivity and process improvement, with the increase in sustainable 

manufacturing performance emerging only as a secondary effect. As far as Resource optimization is 

concerned, against growing requirements for responsible use of natural resources and trends toward 

circularity of materials, manufacturers need cost-effective approaches that can be enabled by AI 

[170]. Overall, these results confirm the role of market dynamics in directing the course of 

technological progress for meeting sustainability goals. In this perspective, it is interesting to note 

that, even though the patents were specifically selected to identify AI developments for “mitigation 

or adaptation against climate change” (see Section 3), the solutions appear related to domains 

traditionally rooted in fostering manufacturing productivity and operational effectiveness [168], 

[169]. The impact of these technologies on reducing the environmental footprint of manufacturers, 

although extensive and relevant (as described above), appears to be more of an indirect or 

complementary benefit. This may suggest that the primary motivation for developing and adopting 

AI-driven tools is to enhance operational performance, with sustainability gains emerging from higher 

efficiency. These trends seem consistent with dynamics already expounded in the literature when 

considering problem-driven innovation, as the unfolding of consequential problems and their 

solutions induce the emergence and development of innovation [96]. In this sense, it can be argued 

that AI’s role in promoting environmental sustainability might become more prominent as a 

consequence of regulatory pressures, stakeholder demands, and societal expectations [171], [172]. 

Future developments are likely to embed from the outset aspects such as consumption optimization 



and pollution reduction, representing a major shift from actual practices. This anticipated evolution 

might mark a significant step forward in aligning the capabilities of AI with the urgent need for 

climate change mitigation and environmental protection [86]. 

Finally, only a minority of organizations have adopted a comprehensive strategy that integrates 

the development of both core and specialized AI solutions. When considering the focus of the top 

applicants (Table III), most players are focused on specific technologies (i.e., IPC codes). These 

results show a peculiarity in the manufacturing industry as opposed to the consumer sector, which 

appears instead dominated by tech giants in the development and commercialization of AI [10]. Given 

the interplay between core and specific AI technologies, the analysis shows that innovators might 

avoid establishing a full range of AI capabilities internally by pursuing strategic alliances and 

partnerships with organizations that possess complementary characteristics [173], [174]. The 

challenges of this path relate to goal alignment, intellectual property concerns, and the need to 

establish effective collaboration mechanisms [175]. 

In addition to these insights, one important message stems from the geographical distribution of 

AI patents (Fig. 3, Table I) that underlines the dominance of China against rooted technology giants 

such as the United States and Japan [101]. This highlights a significant shift in the epicenter of 

innovation and points to the global nature of the “AI race”: the traditional model seen in technologies 

and paradigms such as the Internet of Things and Industry 4.0 [16], [37], where inventions come from 

a few highly developed countries, is now being challenged. In this perspective, the leading role of 

China’s public universities confirms strong governmental support for innovation [143]. By sustaining 

public institutions for AI research, the state administration ensures that technological progress not 

only advances at a rapid pace but also aligns with national priorities and strategic goals, underscoring 

a deliberate move to shape and direct the course of innovation from the top down [176], [177]. 

 

6. Conclusions 

This study provides relevant implications for theory, practice, and policy. Starting with the 

contributions to theory, we answer previous calls for more research on AI and sustainability (e.g., 

[11], [91]), presenting the first large-scale patent analysis that explores the landscape of AI solutions 

to address climate change in manufacturing processes. By considering a dataset of 5,919 patents 

coming from all major patent offices, we move a step forward from conceptual studies and literature 

reviews, grounding our findings in tangible evidence. Our analysis not only clarifies the actual 



domains of AI adoption but also depicts the underlying technologies and future trends. Specifically, 

the findings provide an empirically grounded overview of the innovation trajectories of AI as a GPT, 

confirming some general dynamics while highlighting specificities in terms of GPT loops and 

complementarities with clean tech and digital transformation technologies [21], [22].  

Another contribution to theory stems from showing that AI innovation seems to be targeted at 

improving operational performance, with climate change mitigation/adaptation playing the role of a 

notable but secondary benefit. This challenges the dominant narratives found in the extant literature 

(e.g., [11], [12], [48]) and underlines the intricate nexus between technological innovation, business 

performance, and sustainability outcomes. This is also relevant in terms of problem-driven 

innovation, suggesting the relevance of institutional pressures to stimulate and sustain technological 

development in this domain. 

Lastly, the study has highlighted some differences in terms of players and geographies of AI 

development: China is mainly committed to fostering innovation through public investment, while 

the arena in the United States and Europe is often characterized by major corporate entities. This 

points to relevant considerations in terms of how different innovation ecosystems—state-led versus 

market-led—affect the pace and nature of technological advancement. Along these lines, we show 

peculiarities that make AI manufacturing applications different than those developed in the consumer 

sectors, driving the presence of a diverse set of players [10]. 

This study also delivers valuable insights to practice. By demonstrating that the role of AI solutions 

to address climate change in manufacturing processes is primarily focused on six domains—

predictive analytics, material sorting, defect detection, advanced robotics, scheduling, and resource 

optimization—we hope to offer executives guidance for both the adoption and development of this 

technology. Firms seeking to improve the environmental dimension of their activities can leverage 

our findings to gain a comprehensive overview of the AI-enabled approaches available for such a 

purpose. In parallel, sustainability consultants may find our research relevant in advising companies 

on the selection of AI-driven strategies that best align with their goals. Taken together, these aspects 

could foster AI diffusion with potential benefits for society as a whole.  

On the development side, a deep dive into the technologies underpinning the six application 

domains provides a clear understanding of the underlying knowledge and skills necessary to develop 

and manage AI solutions. By assessing their internal capabilities against these specific requirements, 



organizations can identify areas where improvements are needed or where external expertise should 

be sought. This is relevant for guiding strategic decisions on training, R&D efforts, and alliance 

formation, ensuring that companies and public entities are adequately prepared to innovate and 

maintain a competitive edge in the AI arena. Along similar lines, the study’s projection of future 

patterns in AI enables strategic foresight into the evolving landscape of sustainable manufacturing. 

Identifying emerging trends is critical to making informed decisions about innovation paths and 

resource allocation. By staying attuned to these developments, companies can position themselves to 

capitalize on new opportunities and technological competitiveness, securing a leading role in the 

paced world of sustainable manufacturing. Our findings call on organizations to take a dynamic, 

forward-looking approach to their AI R&D strategies, carefully selecting their interest fields based 

on both current trends and future prospects. Early investment in rapidly maturing domains could yield 

immediate benefits, while engagement in domains with longer horizons requires a vision that 

embraces incremental progress and long-term potential [178], [179]. Effective strategic planning, 

therefore, requires a judicious balance between capitalizing on near-term advances and nurturing 

emerging domains that are poised to shape waves of innovation in the years to come. In this 

perspective, Chinese organizations, which are at the forefront of AI patenting efforts, might find our 

results valuable for maintaining their advantage and further fostering technological progress. For 

companies in Europe and the United States, this information could serve as a strategic roadmap. 

As for the contributions to policy, the findings suggest that US and European policymakers need 

to consider the effects of different patenting levels of AI solutions to address climate change in 

manufacturing. Overall, our findings urge policymakers to reflect upon how to prioritize and measure 

the effectiveness of incentive schemes and financial support for R&D in AI technologies. This could 

include tax breaks for organizations investing in AI research, grants for collaborative projects, and 

increased funding for AI-focused education and training programs, which however should be 

measured for their efficacy [180]. On the other hand, in China, the significant role of universities in 

AI patenting underscores the potential of university spin-offs, state-owned enterprises, and public-

private ventures to commercialize these solutions. Policies aimed at fostering collaboration with 

businesses could be key to ensuring a balance between more basic and applied research [17], [181]. 

Moreover, the presentation of likely future trends might help policymakers and funding agencies 

to better identify which areas need more support. This information offers valuable insights for making 



strategic decisions, enabling the direction of resources toward the most promising domains to 

facilitate technology transfer, stimulate economic growth, and drive social change [132]. 

This article has some limitations that might be addressed by future studies. First, while the use of 

patents to analyze innovation dynamics is a well-established approach, it presents some drawbacks. 

Specifically, not all innovations are captured in patent data, as some may be unpatentable or better 

protected through other means/approaches (e.g., [16]). Future research could consider additional 

secondary sources (e.g., industrial and funded projects) [62] or gather primary data by conducting 

interviews and running surveys with policymakers, technology providers, and users.  

Second, while the study used LDA to identify AI application domains building on patent abstracts, 

it potentially missed relevant information contained in other sections, such as claims and drawings. 

Future studies could benefit from employing more sophisticated topic modeling techniques and 

examining the whole body of the documents.  

Third, while an assessment of the actual impact (i.e., effectiveness for climate change 

adaptation/mitigation) of patented AI solutions is beyond the scope of our study, we believe it 

deserves further investigation.  

Fourth, despite the Logistic, Gompertz, and Richards models providing reliable and robust 

forecasts both in terms of explaining historical trends and predicting the future development of AI 

solutions to address climate change in manufacturing, they mainly account for endogenous growth 

factors and overlook exogenous influences that could radically alter future trajectories. A relevant 

example is quantum computing, as an exogenous paradigm shift in technology [182]. By leveraging 

quantum mechanics and physics (e.g., [132]), quantum computing is poised to provide exponential 

computational power, making it a critical driver of future technological advances [183]. In the context 

of our analysis, it has the potential to accelerate the maturation of existing AI applications and foster 

the creation of novel solutions [41], thereby transforming the landscape depicted so far [184].  
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Table I: Top 20 applicants 
 

Applicant Country Type 
Number of 

patents 
Average family 

size 
Guangdong 

University of 
Technology 

China University 67 2.04 

Fanuc Japan Company 60 7.07 
South China 
University of 
Technology 

China University 50 2.04 

Zhejiang University China University 50 2.38 
Baidu China Company 47 2.66 

Central South 
University 

China University 41 2.07 

Huazhong University 
of Science and 

Technology 
China University 41 2.00 

Ping An Technology China Company 40 2.60 
University of 

Electronic Science 
and Technology of 

China 

China University 39 2.00 

Northeastern 
University 

United States University 38 2.68 

Rockwell Automation United States Company 38 4.84 
Beihang University China University 37 2.03 

Siemens Germany Company 36 6.00 
Xi’an Jiaotong 

University 
China University 35 2.09 

Chongqing University China University 34 2.18 
IBM United States Company 34 3.82 

Tsinghua University China University 33 2.39 
Beijing University of 

Science and 
Technology 

China University 30 2.07 

Harbin Institute of 
Technology 

China University 29 2.17 

Hefei University of 
Technology 

China University 29 2.07 

State Grid 
Corporation of China 

China Company 29 2.41 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table II: Top 20 IPC codes 
 

IPC code Description Number 

G06N 
Computing arrangements based on specific 

computational models 
2709 

G06F Electric digital data processing 2043 

G06Q 
Information and communication 
technology specially adapted for 

administrative purposes 
1699 

G06V 
Image or video recognition or 

understanding 
1202 

G06T Image data processing or generation 1071 
G05B Control or regulating systems in general 834 
G06K Graphical data reading 581 

G05D 
Systems for controlling or regulating non-

electric variables 
520 

B25J Manipulators 302 
H04L Transmission of digital information 243 

G01N 
Investigating or analysing materials by 
determining their chemical or physical 

properties 
215 

G10L 
Speech analysis techniques or speech 

synthesis 
184 

G16C Computational chemistry/materials science 109 
B33Y Additive manufacturing 95 
B29C Shaping or joining of plastics 86 

H02J 
Circuit arrangements or systems for 

supplying or distributing electric power 
78 

H04N Pictorial communication 73 

H01M 
Processes or means for the direct 

conversion of chemical energy into 
electrical energy 

72 

H01L Semiconductor devices 64 
B65G Transport or storage devices 62 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table III: Top 20 IPC codes employed by the top 20 applicants 
 A61B B25J B33Y G01D G01M G01N G05B G05D G06F G06K G06N G06Q G06T G06V G07C G10L G16C G16H H01L H02J H04L H04N 

Guangdong 
University of 
Technology 

- - - - - 8 11 1 84 10 143 99 37 46 3 4 3 4 - - 15 - 

Fanuc - 60 - - - - 123 6 29 11 91 4 12 - - 7 - - - - 7 6 

South China 
University of 
Technology 

- 31 - 4 - 7 2 2 48 5 100 21 52 69 4 6 - - - 2 6 2 

Zhejiang University - - - 4 3 - 16 2 84 43 108 61 10 17 17 - - - 2 6 - - 

Baidu - - - - - 9 - 3 51 5 38 34 30 33 - 13 - 4 - - 3 8 

Central South 
University 

- - - - 3 7 7 - 51 29 90 43 10 30 - - 9 - - - - 7 

Huazhong 
University of 
Science and 
Technology 

- - - - - 10 2 1 41 33 117 81 31 33 - - 23 - - - - - 

Ping An Technology 2 - - - - - - - 58 - 50 34 16 35 3 14 2 16 - - 10 3 

University of 
Electronic Science 
and Technology of 

China 

13 - - 3 - 9 - - 25 12 73 26 32 34 - - - 5 14 - - - 

Northeastern 
University 

- - - 4 - 4 8 3 48 7 81 58 8 20 - - 4 - - - - - 

Rockwell 
Automation 

- - - - - - 92 5 82 8 52 25 - 4 11 - - 2 - 8 20 - 

Beihang University 2 1 - 4 - - 2 1 67 10 85 58 25 21 - - 4 - - - 3 - 

Siemens - 8 31 - - - 86 5 60 17 70 35 6 - 6 - - - - 8 13 - 

Xi'an Jiaotong 
University 

- 2 - 4 9 - 4 6 62 19 72 50 5 18 4 - 5 - - 3 - 5 

Chongqing 
University 

- - - 3 5 5 2 1 83 4 70 55 15 14 - - - - - - - 5 

IBM 9 3 4 - - - 66 9 59 11 57 49 5 8 5 - - - 16 7 16 - 

Tsinghua University - 11 6 - 9 9 6 6 35 7 64 17 29 33 - 6 - - 2 11 4 5 

Beijing University of 
Science and 
Technology 

- - - - - - - 1 58 14 88 45 26 13 - - - - - - 10 - 

Harbin Institute of 
Technology 

- 6 - - 4 - 8 6 34 19 22 12 19 21 - - - - - - - - 

Hefei University of 
Technology 

- 2 - - - - 2 2 8 9 64 52 6 4 - - 4 - - - 2 - 

State Grid 
Corporation of China 

- - - - - - 4 6 54 20 54 73 10 10 - 8 - - - 14 - 10 



Table IV: Topics with keywords and related names 
 

Topic Name Keywords Patents Share 

1 Predictive analytics control, signal, configuration, communication, monitor, sensor, status, intelligent, connected, platform 1434 24.23% 

2 Material sorting image, recognition, material, segment, region, part, surface, identification, area, color 1195 20.19% 

3 Defect detection sample, quality, defect, feature, evaluation, test, abnormal, classification, accuracy, standard 1107 18.70% 

4 Advanced robotics robot, position, task, motion, coordinates, track, agv, map, angle, movement 880 14.87% 

5 Scheduling scheduling, time, order, parameter, plan, optimization, cost, production, strategy, requirement 768 12.98% 

6 Resource optimization energy, power, electric, weight, optimization, parameter, variable, state, temperature, dynamic 535 9.04% 

 



 G06F18 0.0884  G01C21 101  G06N3 0.0835  G06F30 52  G05B19 0.0975  G05B19 67  G06Q10 0.0804 
 G06N20 0.0862  G08G1 93  G10L15 0.033  G05B19 50  G06F30 0.0589  H02J3 66  G01N33 0.0619 
 G06K9 0.066  H04W4 86  G06N20 0.0322  G06N20 44  G06N20 0.0479  G06N20 65  G05B19 0.0602 
 G06Q50 0.0614  G06Q10 76  G01C21 0.0317  G06F17 40  G05B13 0.046  G06F17 59  B23K26 0.058 
 G01N21 0.057  G06Q50 70  F01D5 0.0313  G06F16 32  G06F17 0.0308  G05B13 49  G06F30 0.0499 
 G05B19 0.0421  G06N3 69  G06Q50 0.0241  G05B13 31  G08B21 0.0236  G06F30 47  G05B13 0.0484 
 G06Q10 0.0418  G06T7 66  G06V10 0.0235  G06Q30 30  G06F16 0.0187  G06F11 45  H02J3 0.048 
 H01M10 0.0336  B62B5 66  G06Q10 0.0234  G06F11 29  G06F11 0.0153  G06Q30 40  H01M8 0.0427 
 G06F30 0.0326  H04L29 64  G06T7 0.0225  G06K9 27  G16C20 0.0136  G06F16 39  G06F18 0.0416 
 H01M4 0.0318  B60L3 62  G08G1 0.0213  G06N5 22  G16B40 0.0135  G05B15 39  G01R31 0.0401 
 G06F16 0.0295  B66F9 57  G06V20 0.0197  B33Y50 22  G06N7 0.0133  G06F18 38  G06F17 0.0388 
 G01N33 0.0237  H02J7 55  G06F17 0.0191  B29C64 22  B29C64 0.0123  G05B23 36  H01M10 0.0388 
 G06F40 0.0172  G10L15 55  G06F16 0.0188  G06N7 22  G05D1 0.0122  G06N5 35  G06F11 0.036 
 G06F17 0.017  B60L11 52  G06K9 0.0186  G06F40 20  G06Q30 0.0122  G06K9 34  C25C3 0.0352 
 G06F11 0.0167  G06F17 51  B23K31 0.0176  G06F3 20  G06V10 0.0116  G01N33 33  G16C20 0.0303 
 G06N7 0.012  G06K9 49  B25J13 0.0159  H04L9 18  G06K9 0.0116  H02J13 32  B01J19 0.0284 
 G06T5 0.0109  G06F9 47  H04W4 0.0158  B33Y10 18  G16B5 0.0097  G05F1 32  F27D17 0.0256 
                     

Number of nodes 181  Number of nodes 357  Number of nodes 163  
Number of 

nodes 
292 

Number of edges 1027  Number of edges 2790  Number of edges 727  
Number of 

edges 
1656 

 0.063  Graph density 0.044  Graph density 0.055  Graph density 0.039 
Note: degree centrality indicates the importance and influence of the node in the network; betweenness centrality expresses whether a node occupies a structurally central position in the network; graph density measures how connected the graph is [32], [105], [107], [131], [132]. 



  G06F18 58  G08G1 82  G05B19 59  G06N3 34  G06F30 43  G05B19 52  G06N20 46 
  G06K9 55  H04W4 74  G06V10 46  G06F30 23  G06N20 39  G05B13 44  G06F18 38 
  G06N20 55  B62B5 66  G06T7 40  G06F11 20  G06F17 35  G06N3 40  G06F17 36 
  G06Q50 51  G06Q10 64  G06V20 40  G06N7 18  G06F16 29  G05B15 36  G06F16 34 
  G06Q10 49  H04L29 64  G06K9 38  G06N20 17  G05B13 26  G06N20 35  G06F30 33 
  G01N21 47  B25J9 60  G06Q50 37  G06F17 16  G06K9 26  G06F17 35  G05B19 30 
  G06F30 41  B60L3 54  G06F16 36  G06Q30 14  G06Q30 25  G05B23 32  G01N33 29 
  G06F11 35  H02J7 53  G06F17 34  B33Y50 13  G06N5 20  G05F1 32  G06V10 28 
  G06F16 31  B60L11 52  H04L67 31  G06F16 13  G06F40 19  G06F11 28  G06K9 28 
  G06F40 27  G06Q50 49  G06N20 30  G06F3 12  H04L9 18  G06N7 28  G06N5 25 
  G06N7 26  B60Q5 47  G06Q10 28  G05B13 11  B33Y50 18  H02J13 28  G06F11 25 
  G06V20 26  B60L15 44  G06F30 27  B29C64 11  G06F11 18  G06Q30 28  B23K26 22 
  G06F17 26  B66F9 43  B25J11 27  B23P17 10  G05B19 17  G01R22 25  G05D1 21 
  G06T5 25  G06T7 39  G10L15 27  B23K26 10  G06V10 17  G06F30 23  G16C20 20 
  G05B19 23  G06Q30 39  B25J19 24  B23K31 10  G06F18 17  G01R1 23  B33Y10 19 

 G06N5 23  B60K7 39  B25J13 24  B23P23 10  B33Y10 16  F24F11 22  B33Y50 19 
 B33Y50 21  G07C5 39  B64C39 23  B23K20 10  A61B5 14  G01R31 18  C25C3 19 

Defect detection  Advanced robotics  Scheduling  Resource optimization 
 Betweenness  

2021–2023 
 Betweenness 

2011–2021 
 Betweenness  

2021–2023 
 Betweenness 

2011–2021 
 Betweenness 

2021–2023 
 Betweenness 

2011–2021 
 Betweenness  

2021–2023 
 G06N3 0.2585  G05D1 0.3696  G05D1 0.3929  G05B19 0.2436  G06N3 0.4373  G06Q50 0.2267  G06N3 0.4758 
 G06T7 0.1656  G05B19 0.1290  B25J9 0.1615  G06Q10 0.1990  G06Q50 0.1401  H01M8 0.1599  G06N20 0.0989 
 G06V10 0.1133  B25J9 0.0786  G06N3 0.1526  G06N3 0.1555  G06Q10 0.0926  H02J3 0.1191  G01N33 0.0881 
 G06F18 0.1053  F01D5 0.0687  G05B19 0.0875  G06Q50 0.0967  G06F30 0.0675  G05B19 0.1012  B23K26 0.0680 
 G06K9 0.0803  G06Q10 0.0450  G06V10 0.0544  G05B13 0.0601  G06N20 0.0672  G06Q10 0.0941  G06F18 0.0665 
 G06N20 0.0569  G01C21 0.0414  G10L15 0.0466  G06F30 0.0325  G05B13 0.0469  G05B13 0.0892  G06Q50 0.0659 
 G01N21 0.0549  G06Q50 0.0379  G06T7 0.0413  G06F11 0.0235  G06F17 0.0449  C01B3 0.0782  C25C3 0.0645 
 G06Q50 0.0532  G08G1 0.0272  G06F16 0.0385  G06F19 0.0207  G05B19 0.0428  G01R31 0.0746  G06Q10 0.0534 
 G06Q10 0.0432  G06N20 0.0266  G06V20 0.0383  G06N7 0.0169  G06F16 0.0249  G06N99 0.0688  B01J19 0.0498 
 G06F30 0.0326  H02J7 0.0264  G06N20 0.0369  G06N20 0.0123  G16C20 0.0225  B33Y50 0.0566  F27D17 0.0478 
 G01N33 0.0274  H04W4 0.0248  G06K9 0.0333  G06Q30 0.0093  G16B40 0.0203  G06N20 0.0496  G06F30 0.0477 
 G05B19 0.0246  G06T7 0.0172  G06F17 0.0305  G06F17 0.0093  G06K9 0.0192  G06F11 0.0485  G06F17 0.0462 
 G06F11 0.0219  B62B5 0.0130  G06F30 0.0288  G06F16 0.0077  G06V10 0.0178  G06N3 0.0479  G06F16 0.0451 
 G06F40 0.0203  B25J19 0.0103  G06Q50 0.0261  B29C64 0.0069  G16B5 0.0137  G06F30 0.0402  G16C20 0.0411 
 G06F16 0.0176  B60L11 0.0101  H04L67 0.0232  G06F3 0.0052  B33Y50 0.0116  G06F17 0.0402  G06K9 0.0405 
 G06F17 0.0173  H04L29 0.0099  B25J11 0.0188  B33Y50 0.0051  G06N5 0.0105  H01M10 0.0394  G06V10 0.0314 
 G06T5 0.0133  B64C39 0.0094  G05B13 0.0183  G05D1 0.0041  G06N7 0.0085  H02J7 0.0361  C25C7 0.0268 
 G06V20 0.0128  B25J13 0.0090  B62D63 0.0176  G06F9 0.0010  G16C60 0.0085  G06T7 0.0316  G16C60 0.0210 
 B23K37 0.0126  B60L3 0.0073  B23K31 0.0169  H04L29 0.0009  G06Q30 0.0082  G05B15 0.0295  G05B19 0.0204 
 G16C60 0.0117  B60L50 0.0073  B64C39 0.0146  G06F21 0.0008  G06F18 0.0066  G05D3 0.0231  G06F40 0.0181 

Note: degree centrality indicates the importance and influence of the node in the network; betweenness centrality expresses whether a node occupies a structurally central position in a network; graph density measures how connected the graph is [32], [105], [107], [131], [132]. 
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the time taken for the technology to pass through the growth stage and reach maturity, and the midpoint is the exact point at which the growth trend enters the maturity stage. Accordingly, before the midpoint year, 

-value of the F-test assesses whether the overall model is a good fit for the data [14], [32], [41], [133]. 



 
Fig. 1: Methodological approach to patent analysis adopted in this paper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig. 2: Temporal trends of patents related to AI solutions to address climate change in 

manufacturing.  
Note: 2023 is shaded as considered patents are up to November 2023. 
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Fig. 3: % of patent applications by priority country. 
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Fig. 4: Growth curve forecast. 

Note: the specific parameters of the adopted models are reported in Table 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Fig. 5: Summary framework. 

 
 
 

 


