User-producer interaction and the degree of novelty of innovations: a global perspective

Gouya Harirchi (gh.ino@cbs.dk)
Copenhagen Business School- Department of Innovation and Organizational Economics

Cristina Chaminade (cristina.chaminade@circle.lu.se)
CIRCLE, Lund University

This is a pre-print version of a paper that has been submitted for publication to a journal.

This version: October 2013
User-producer interaction and the degree of novelty of innovations: a global perspective
Gouya Harirchi and Cristina Chaminade

ABSTRACT
User-producer interactions have been traditionally recognized as important for innovation. With the rapid growth of emerging economies’ markets, and an increasing degree of technological sophistication of both users and producers in those markets, user-producer interaction is becoming global. The existing literature is quite limited in explaining how collaboration with users in different income regions affects the degree of innovations’ novelty. Using original firm-level data collected in nine countries, this paper argues that collaborating with international customers is positively related to higher degrees of novelty. Furthermore, firms in low- and middle-income countries will benefit more from south-south collaboration than a south-north one, at least in terms of collaboration with customers for innovation.

JEL Code: D 83; L 25; M 16; O 32

Keywords: Users; international demand; innovation; absorptive capacity; Europe; BRICS

Disclaimer: All the opinions expressed in this paper are the responsibility of the individual author or authors and do not necessarily represent the views of other CIRCLE researchers.
USER-PRODUCER INTERACTION AND THE DEGREE OF NOVELTY OF INNOVATIONS: A GLOBAL PERSPECTIVE

Gouya Harirchi-
Copenhagen Business School- Department of Innovation and Organizational Economics
gh.ino@cbs.dk

Cristina Chaminade
CIRCLE- Lund University
Cristina.chaminade@circle.lu.se

Acknowledgements: Research for this paper was partially funded by the European Community's Seventh Framework Program (Project INGINEUS, Grant Agreement No.225368, www.ingineus.eu). The authors alone are responsible for its contents, which do not necessarily reflect the views or opinions of the European Commission, nor is the European Commission responsible for any use that might be made of the information appearing herein. Additionally, financial support from the Swedish Research Council (Linnaeus Grant No. 349200680) and Vinnova (Grant agreement 2010-07370) is acknowledged.

We thank Davide Castellani, Grazia Cecere, Stine Haakonsson, Peter Maskell, Keld Laursen, Giancarlo Lauto, Mark Lorenzen, Marion Poetz, Monica Plechero, Larissa Rabbiosi, Toke Reichstein, Valentina Tartari, as well as the participants in our session at DRUID 2012 and Globelics 2013 for their input and suggestions for improvement of previous versions of this paper. The usual disclaimers apply.
Abstract
User-producer interactions have been traditionally recognized as important for innovation. With the rapid growth of emerging economies’ markets, and an increasing degree of technological sophistication of both users and producers in those markets, user-producer interaction is becoming global. The existing literature is quite limited in explaining how collaboration with users in different income regions affects the degree of innovations’ novelty. Using original firm-level data collected in nine countries, this paper argues that collaborating with international customers is positively related to higher degrees of novelty. Furthermore, firms in low- and middle-income countries will benefit more from south-south collaboration than a south-north one, at least in terms of collaboration with customers for innovation.

KEYWORDS:
Users; international demand; innovation; absorptive capacity; Europe; BRICS
1. INTRODUCTION

User-producer interactions have been traditionally recognized as important factors in the innovation process (Lundvall, 1988). Hitherto most of the literature on user-producer interactions and its impact on the degree of novelty is based almost exclusively on the evidence of users and producers located in high-income countries (Fitjar & Rodríguez-Pose, 2012; Laursen, 2011). With the rapid growth of emerging economies’ markets, and an increasing degree of technological sophistication of both users and producers in those markets (Altenburg, Schmitz, & Stamm, 2008; Ernst, 2005; Whang & Hobday, 2011), user-producer interaction is becoming global. However, the existing literature is quite limited in explaining how collaborations with users in different income regions affect the degree of innovations’ novelty for producers located in high-income countries, as well as middle- and lower-income countries, which have different degrees of technological capabilities (Castellacci & Archibugi, 2008). This is due to three main shortcomings in the literature.

On the one hand, although many studies (Asheim & Isaksen, 2002; Atuahene-Gima, 1996; Christensen & Bower, 1996) discuss the impact user-producer interaction has on innovation, they do not specify how the interaction relates to different degrees of novelty in that innovation, from new to the firm to new to the world.

On the other hand, most of the literature focuses on the user as a source of information for innovation (Atuahene-Gima, 1996; Augusto & Coelho, 2009; Fitjar & Rodríguez-Pose, 2012; Kohli & Jaworski, 1990; Lettl, Herstatt, & Gemuenden, 2006; Rothwell, 1986) and not as an active partner in the development of the innovation. This view is particularly predominant in the discussion of how multinational enterprises (MNEs) exploit their innovations in international markets by adapting their already developed innovation to particular market needs (learning from exporting), as well as the extensive
literature on market orientation. We argue in this paper that with the increased technological sophistication of international users, this “plug & play” vision is quite limited, and that more active collaboration with the user is needed in order to develop innovations.

Finally, the specific location of both users and producers is almost completely absent from the literature. Most of the authors tend to treat the international user as one single category (e.g. Fitjar & Rodríguez-Pose, 2012; Laursen, 2011), not considering the location of the user, and consequently the differences between users in high-, middle- and low-income countries. Similarly, most of the literature is based on evidence of producers located in high-income countries, thus ignoring differences in the degree of producers’ competencies in different income regions.

The aim of this paper is to **explore the role of the active collaboration with users on the degree of novelty by focusing on the location of both users and producers.**

In dealing with the above issue, this paper draws on a unique set of firm-level data collected in 2010 in a variety of European countries, as well as Brazil, China, India and South Africa. The questionnaire collected data on innovation collaboration with customers – as one type of users – in the development of innovations, taking into account their geographical location. The data allows the researcher to distinguish the international locations of customers in high-, middle- and low-income countries.

More specifically, this paper aims to answer two main research questions:

1. For firms located in high-income countries, how does collaboration with customers in high-income countries (north) and low- and middle-income countries (south) relate to the degree of novelty of their product innovations?
2. For firms located in low- and middle-income countries, how does collaboration with customers in high-income, or middle- and low-income countries, relate to the degree of novelty of their product innovations?

By doing so, the paper contributes to the literature on user-producer interaction by including the location of both users and producers as active partners in the development of product innovations, and their relationship to the degree of innovations’ novelty on a global scale. Furthermore, by providing empirical evidence on the role of users from the south as important partners in innovation collaboration, this paper contributes to discussions on the role of demand for innovation for firms located in high-income countries, as well as those in low- and middle-income countries.

The paper is structured as follows. In the next section we review the literature on user-producer interaction, as well as the geography of the user and producer, and the impact on innovation. In section 3 we present the data on which the analysis is based. Section 4 contains the main results, and we conclude the paper with a discussion and suggestions for further research.

2. LITERATURE REVIEW

Users, either as individuals or organizations, have long been regarded as key actors in the innovation process (Lundvall, 1988). Producers are highly interested in commercializing their products, and often engage in different activities (market intelligence, customer relations, etc.) to access their users’ knowledge and understand their needs (for an overview see Bogers, Afuah, & Bastian, 2010). Users, on the other hand, are motivated to share knowledge conducive to innovation so that products and services fit better with their needs and preferences.
Users in general, and customers in particular, have long been considered as a key source of information for innovation and there is an extensive amount of literature that has analyzed empirically the impact of sourcing as a form of user-producer interaction on innovation. However, the results are not conclusive. While most authors find a positive relationship (Atuahene-Gima, 1996; Augusto & Coelho, 2009; Fitjar & Rodríguez-Pose, 2012; Kohli & Jaworski, 1990; Lettl et al., 2006; Rothwell, 1986), some studies have argued that paying attention to customers has led to the “death” of innovation (Bennett & Cooper, 1979; Christensen & Bower, 1996). What this literature often lacks is a clear definition of what innovation means and a more nuanced discussion on how user-producer interaction affects the degree of novelty (Garcia & Calantone, 2002).

(a) Forms of user-producer interaction and the degree of novelty of innovations

Regarding the degree of novelty, one of the most widely used definitions is the OECD’s (OECD, 1997). The OECD distinguishes between technologically new and significantly technologically improved innovations¹ on the one hand, as well as new-to-the-firm, new-to-the-industry and new-to-the-world innovations on the other. An innovation is new to the world if the firm has introduced a new or significantly improved good or service onto the global market before competitors; it is new to the market or industry if the firm is the first in that specific market or industry to have implemented it; it is new to the firm if the innovation was already available from its competitors in its market. New to the world and technologically new are often used in

¹ Referred to as major product innovations and incremental product innovations in previous versions of the manual, and more in accordance to the general distinction between radical and incremental innovations.
the literature as synonyms for radical or breakthrough innovations, while improved innovations and new to the firm are often used as proxies to incremental innovations.

Among the exceptions in the literature that make specific reference to the degree of novelty, Lukas and Ferrell (2000), argue that market orientation, as a simple form of user-producer interaction, seems to be positively related to breakthrough innovation. In a similar vein, Augusto and Coelho (2009) concluded that sourcing for information from the customer was positively related to breakthrough innovations. Zhou, Yim and Tse (2005) analyzed the effects of market orientation on breakthrough innovations, and concluded that market orientation has a positive effect on tech-based innovation and a negative impact on market-based innovation. Govindarajan, Koppalle and Danneels (2011a), highlight that the impact on innovation depends on the type of customer. Relating market orientation and innovations with the types of customers, the authors show that focusing on emerging customers is unrelated to radical innovations, while a strategy oriented to mainstream customers may have a positive impact on the degree of innovation.

One of the limitations of this literature is that reduces user-producer interaction to users as sources of information that may be relevant to innovation. It assumes that information from the markets is easily transferable to the innovation processes. However, this “plug & play” vision is disputable. The negative implications of customer orientation are attributable to too narrow an understanding of market orientation strategies (Augusto & Coelho, 2009). As some authors argue (Alam, 2002; Magnusson, 2009) with the increased technological complexity of products, the diversity of markets and the tacit nature of the customer knowledge, customers should be actively involved in different stages of product development needs.
Indeed, when interaction takes the form of *active collaboration* with the users or, in other words, when users are partners in the development of innovation the impact of user-producer interaction on the degree of novelty is much clearer. Scholars in the so-called user-centered innovation literature or lead-user literature (Baldwin, Hienerth, & von Hippel, 2006; Eric von Hippel, 2005) regard users not only as consumers of products, but also as agents who know exactly what they require, thereby allowing them to become innovators of products that are adapted by manufacturers for commercial use later on; Users can also be used for understanding highly advanced needs or as external problem-solvers (Franke & Hippel, 2003; Lettl, 2007; Poetz & Prugl, 2010). Users may become involved in the development of innovations with the producers, or even become innovators themselves (otherwise known as *lead-users*) (E. von Hippel, 1986). In this respect, interaction with users is often associated with breakthrough innovations (Enos, 1962; Oliveira & von Hippel, 2011; Poetz & Prugl, 2010; Eric von Hippel, 2005).

However, as economic geographers have long discussed, the impact on the degree of novelty is not only related to the form of interaction with the user, but also to the specific location of the user. Asheim and Isaksen (2002) have illustrated the role of local users in *incremental* innovations in the Norwegian ship industry. Their results are in line with Weterings and Boschma (2009), who use firm-level data on user-producer interactions of Dutch software firms, and show that although spatial proximity facilitates interaction, it does not impact firms’ innovation output in terms of *radical* innovations. Radical innovations seem to be more related to interactions with international users, while incremental innovations are associated with local users (Fitjar & Rodríguez-Pose, 2012; Laursen, 2011). So, while local users are important for incremental innovation, international users matter more for more radical innovation, as discussed next.
(b) Location of users and producers and the degree of novelty of innovations

Interaction with international users may take a variety of forms from exports to active collaboration with users in distant locations. Exports can be considered as a passive form of acquiring relevant knowledge for innovation, and are more related to asset exploitation strategies (Castellani & Zanfei, 2006) and the sourcing of specific market knowledge than to the development of innovation. Incremental innovation is triggered by a need to adapt products to the local market and the specific demands of local users in the foreign market. Interactions with the customer are thus a source of information that will allow the firm to adapt the already developed innovation to the specific tastes and preferences of the markets. In this respect, international markets can facilitate access to valuable knowledge that can be used for innovation (Blalock & Gertler, 2004; Castellani, 2002; R. Salomon & Jin, 2007). Castellani and Zanfei (2006) argue that exporters often benefit from accessing the diverse knowledge available in the local export market, which has a positive impact on innovations. Socioeconomic, institutional and environmental factors influence the shaping of the demand context (Ray & Ray, 2011), implying differences between consumers’ tastes in different geographical locations (R. M. Salomon, 2006). The analysis of Slovenian microdata indicates a positive relationship between exporting and process innovations specifically (Damijan, Kostevc, & Polanec, 2010). In fact, both innovation and exports are complementary activities that can reinforce each other (Golovko & Valentini, 2011). Prior product

2 In this vein, “per capita income of average consumers” and “infrastructural variability” are the important contextual dimensions making a distinction between demand from emerging economies and advanced economies ((Govindarajan & Ramamurti, 2011b)
innovation has been analyzed as a moderating factor which, through its effects on firms’ productivity, allows firms to enter the exporting market (Cassiman & Golovko, 2010). Therefore, exporting can improve firms’ learning, and result in innovations at the same time as more innovations will increase the likelihood of entering into new markets. This stream of literature is particularly predominant in the discussion of how MNEs exploit their innovations in international markets by adapting their already developed innovation to particular market needs, and is based on evidence of multinationals from developed countries who adapt their innovation in international markets, both in the developed and developing world.

A second stream of literature on engagement with international customers thus revolves around active collaboration with users to access specific knowledge that can be used for innovation. Collaboration with local users in the foreign market is a more active form of engagement by comparison, and more linked to asset seeking strategies. Firms actively seek to collaborate with specific customers to gain strategic innovation knowledge. This form of engagement is motivated by the geographically bounded nature of knowledge sources, which drives firms to cross geographical borders and gain competitive advantages through access to local knowledge sources (Almeida, 1996; Castellani & Zanfei, 2006; Meyer, Mudambi, & Narula, 2010). With the increased technological sophistication of some products and services, and a growing diversity of markets, firms need to actively engage customers in their innovation process (Fabrizio & Thomas, 2012; Whang & Hobday, 2011).

What these two streams of literature have in common is that they do not consider the specific location of the international customer in their analysis. Collaboration with customers in the development of innovations has traditionally taken place in a north-north context. Therefore, both the theoretical frameworks, as well as the empirical
evidence of the impact of user-producer interactions on innovation, are based on the implicit assumption that both the users and producers are located in high-income countries and have high technological competences.

However, the rapid growth of emerging economies has triggered a change of strategy for many multinational firms, who have started to preempt local competitors in emerging economies by developing innovations that can be expanded later on in high-income countries (Immelt, Govindarajan, & Trimble, 2009; Wooldridge, 2010). This requires a change of strategy from exploiting what has been developed in the home nation to exploring local markets and local needs for new product developments (Kuemmerle, 1997); that is, from sourcing information on the customer to actively collaborating with the customer for the development of innovations.

Important innovations occurring in emerging economies usually do not involve breakthrough innovations, but novel and innovative combinations of knowledge and technologies (Govindarajan & Ramamurti, 2011b). What MNCs can gain (in terms of innovation) from engaging with users located in developing countries remains to be systematically studied, but there is anecdotal evidence on the importance of reverse innovations as well as on the increasing technological sophistication of some users in developing countries. Reverse innovation – still a nascent phenomenon – refers to innovation developed initially for low- and middle-income countries, which then spreads to high-income countries (Govindarajan & Ramamurti, 2011b; Immelt et al., 2009; Ray & Ray, 2011). One such example is the so-called “innovations for the poor” or “frugal innovations” (Prahalad, 2005).

However important, the role of users from the south cannot be limited to the poor, as some studies have shown the role of sophisticated users in emerging economies

3 General Electrics’ low-cost electrocardiogram, that initially was developed for rural areas in India (Immelt et al., 2009) or the Nano car – the cheapest car in the world – developed by Tata Motors of India (Ray & Ray, 2011) are examples of reverse innovations.
(Mudambi, 2008; Whang & Hobday, 2011; Yeung, 2007). The case of development in the Brazilian software industry in the early 2000s demonstrates how locals’ idiosyncratic needs have led to the huge development of this industry (Botelho, Stefanuto, & Veloso, 2005); while Asian users are considered technologically very advanced in various sub-industries, particularly with regard to electronics (Whang & Hobday, 2011; Yeung, 2007). Ernst (2005), for example, argues that “global firms relocate design activities to be close to the rapidly growing and increasingly sophisticated Asian markets for communications, computing and digital consumer equipment, to be able to interact with Asia’s lead users of novel or enhanced products or services”. (p. 55)

Producers of innovation can also be located in low- and middle-income countries, and this may have implications for the nature and impact of user-producer interactions on innovation. It is uncontroversial that firms located in high-income countries always rank higher than firms in other countries in terms of investment in R&D and innovation, number of researchers and innovation output (Srholec & Verspagen, 2012; UNCTAD, 2006), and that national and regional conditions affect the capacity of firms to innovate (Arora & Badge, 2006; Chaminade & Vang, 2008; Fagerberg, Srholec, & Knell, 2007; Srholec & Verspagen, 2012). But while it is true that the technology clubs in the world have remained stable in the last five decades (Castellacci & Archibugi, 2008), this may be rapidly changing. China joined the more advanced cluster (Castellacci and Archibugi, 2008) between 1990 and 2000, and in 2010 its share of total global R&D spending was 12.2% – the same level as Japan, but still below the US and Europe (Battelle, 2011) – which suggests that these countries may also be home to technologically sophisticated users and producers (Plechero, 2010).
In sum, the existing literature on user-producer interactions has focused almost exclusively on producers located in high-income countries, and on the interaction with local or domestic users. The existing evidence suggests that while local users are important for incremental innovation, international users are important for radical innovation. However, the research conducted hitherto does not allow us to make a distinction between users from high-income countries and users from low- and middle-income countries. Anecdotal evidence suggests that interacting with users in the south may be useful mainly for incremental innovation, but the rapid accumulation of capabilities in some emerging economies suggests otherwise.

Extending the current discussion on user-producer interactions to include middle- and low-income countries is one of the purposes of this paper. More specifically, we want to investigate the impact of collaborating with users on innovation, taking into account the geographical location of both users and producers on a global scale.

3. METHODOLOGY AND EMPIRICAL ANALYSIS

(a) Sample

This research project relies on a survey conducted across nine countries under the auspices of the EU-funded INGINEUS project.\(^4\) The detailed description of the project’s data collection and challenges faced, particularly in emerging economics, is available in the methodology document of the project (EU, 2009). The survey aims to collect data similar to community innovation surveys (CIS) for countries that lack an innovation survey. While the novelty of the data set has enabled a comparison between high-income and middle-income countries, it has also resulted in challenges for data collection; therefore, precautions should be taken when generalizing the results. This

\(^4\) The INGINEUS project focuses on the developed and developing world to determine the extent to which innovation is taking place in globally dispersed networks.
research should be regarded as an *exploratory research* that should be followed by further quantitative and qualitative studies.

Data on firms in Europe were gathered from leading economies with a per capita income above US$ 45,000 per year, namely Denmark, Germany, Norway and Sweden. Estonia, a transition economy, was also part of the survey, as were four prominent middle-income countries: Brazil, China, India and South Africa. The choice of countries allows a clear comparison of economies that are global leaders and ones that are emerging economies in the global arena in line with the overall aim of the project. The survey for each country focused on either ICT, automotive or agro-processing, i.e. whichever sector was of economic importance in that country.

Because one of the goals of the INGINEUS project was to extend insights about the globalization of innovation beyond large multinationals from high-income countries, the choice of the data sets was complicated. The sample of firms were selected by using existing databases, including: Statistics Sweden; the German commercial database Hoppenstedt; Proff Forvalt – Eniro, a commercial register for Norwegian firms; the Estonian Business Registry; Danish Statistics; Shenzhen & Beijing database for China; and the NASSCOM Directory of IT firms for India. In the case of Brazil and South Africa, due to lack of up-to-date databases, the strategy comprised combining existing databases. In Brazil, the database of the automotive union SINDIPECAS, the official Annual Registry of Social Information (RAIS) and information from large automotive firms about their suppliers were used to compile a sample frame. The databases used in the case of South Africa were the Experian database; Go Organic Online Directory, South Africa’s premier organic website, directory and marketing company; Tradepage

5 Estonia is an unusual case; although it is based in Europe, it has a similar level of development to middle-income countries.

6 Sweden had both auto and ICT surveys. However, the selection of these two industries does not affect our final results, as the auto industry is a small share of our total sample.
The gathering of information also took place in a variety of different ways. In countries with a culture of participating in surveys, e.g. the Scandinavian countries, firms were sent a link to an online tool. In the middle-income countries, data gathering was best done telephonically or in face-to-face interviews. In all sectors and across all countries, 1215 responses were collected. However, for the purpose of this study, non-innovative firms were left out, as they did not answer the relevant question on collaboration for innovation. Table 1 offers a summary of the results for each sector and country, the number of responses and response rates. The combined sample is dominated by ICT responses. Although China has the second-highest number of responses, it also has the lowest estimated response rate (2.7%). This is because the number of ICT firms in China is extremely high as compared with the other countries participating in the survey, particularly when small firms are considered in the sample. For each country, a t-test for firm size distribution and a non-response test has been conducted. The results indicate that the sample is representative for all countries, with the exception of Germany. Furthermore, non-respondent firms were contacted for feedback on reasons for not answering the survey; their responses indicate that the survey had not been relevant to them. The low German response rate is most likely due to the fact that the questionnaire was sent out during a period when the German automotive industry was struggling with the aftermath of the economic crisis.

Table 1. Approx. here

(b) Variables

(i) Dependent variable

The *dependent variable* is based on a question that asks firms about their most important innovation in the past three years (2006–2008), with the option of choosing among product or process innovations (for the purpose of this paper we are only considering product innovations, including new services). In terms of product innovation, the survey asked firms to indicate whether “they had been able to introduce any products and/or services that were new to the firm, new to the industry or new to the world”. We have excluded non-innovative firms, as they did not answer the questions on collaboration for the development of the most important innovation.\(^7\) As we are interested in the degree of novelty, the variable is categorical, taking the value 1 for new-to-the-firm innovations, 2 for new-to-the-industry innovations and 3 for new-to-the-world innovations. Although firms could have chosen more than one category, we only consider the highest degree of product innovation. Thus, a firm with both new-to-the-firm and new-to-the-world innovations is counted for its new-to-the-world innovations. In this way, we avoid biased results due to different interpretations of the question, as a firm with a new-to-the-world innovation can also select new-to-the-industry and new-to-the-firm for the *same innovation*. Consequently, we have tried a more elaborate estimation by only considering the most novel innovation. It must also be noted that, in later paragraphs, we consider radical innovation as new to the world.

(ii) Explanatory variables

\(^7\) While not talking about non-innovative firms can be a source of bias due to shortcomings of the data set, it must also be emphasized that this paper is seeking to understand the role of collaboration with users for the novelty of the most important innovation; therefore firms without innovation cannot also answer whether collaboration with users has had any impact on their innovations or not.
Firms were asked to indicate their most important innovation partners, with whom they had *actively collaborated* in the past three years (2006–2008), and their geographical locations. The survey listed six different partners (customers, suppliers, competitors, consultancy companies, government and universities), and respondents were asked to specify the geographical locations of the partners. The geographical locations given as options were region;\(^8\) country; South America; Central & Eastern Europe; Africa; rest of Asia; high-income America; Japan & Australasia; and Western Europe.

Customers located in the same region or country in which the firm is located are defined as *local customers*; otherwise, as *international customers*. For the purpose of this paper, we have constructed a variable based on whether the international customers are located in middle- or low-income countries or high-income countries. As firms can have customers in more than one location, this variable is not mutually exclusive (multiple choice answers).

- *Customers in middle-/low-income regions*: South America, Central & Eastern Europe, Africa, and rest of Asia;
- *Customers in high-income regions*: North America, Japan & Australasia, and Western Europe.

In order to examine the influence of geographical location of producer on interactions with customers, we have constructed three categorical variables:

- *Region- international Customer*: This variable captures collaboration between producers in middle-income or high-income countries and international customers in general. Region refers to the location of the firm, and is either middle-income or high-income.

\(^8\) The survey defines a region as a sub-national area.
• *Region-middle-income customers:* This variable captures collaboration between producers in middle-income or high-income countries and customers from middle-income countries. Region refers to the location of the firm and is either middle-income or high-income.

• *Region-high-income customers:* captures collaboration between producers in middle-income or high-income countries and customers from high-income countries. Region refers to the location of the firm, and is either middle-income or high-income.

Table 2 shows the matrix of *divisions between location* of customers and the location of firms. Based on the location of the focal firm, there can be four possible combinations corresponding to the location of the producer and the user.

Table 2. Approx. here

Table 3 shows all possible combinations for each variable. For the simplicity of reading and comparison in Models 5 and 6, the categories of variables have been replaced with their actual meanings.

Table 3. Approx. here

(iii) Control variables
Although this study examines the impact of collaboration with customers on firms’ ability to introduce radical innovations, we also control for the absorptive capacity of the firm by looking at the technological input from universities or R&D activities inside the firm. We have created two dummy variables:

- *University as a source of collaboration*: Dummy variable that takes the value 1 if the firm had indicated collaboration with university for their main innovation.
- *R&D*: Dummy variable that takes the value 1 if the firm had significant R&D activity.

The firms’ characteristics may also influence their ability to introduce radical innovations. Accordingly, we control for size, organizational form, and industry:

- *Size*: Categorical variable based on the answer to the question on FTE employees in the enterprise. Small takes the value 0 if fewer than ten FTE employees or 10–49 employees; medium takes the value 1 if there are 50–249 employees; large takes the value 2 if 250–999 employees or 1000+ employees. We expect the firm size to be positively related to the propensity to introduce innovations.
- *Organizational form*: Categorical variable that takes the value 0 if “a standalone company”; the value 1 if “a subsidiary of an MNC”; and the value 2 if “the headquarters of an MNC”.
- *Industry*: Categorical variable that takes the value 0 if “ICT”; the value 1 if “automobiles”; and the value 2 if “agro-food”.
- *Export market*: Dummy variable that takes the value 1 if the main market is based on export, to control for the effects derived from being internationally market-driven.

(c) Model
In order to analyze the effects of customers from middle- and low-income countries on the degree of novelty – a categorical variable – we have chosen to run a multinominal logit model with new to the firm as the baseline. Post-estimation tests of independent irrelevant alternatives (IIA) show support for the model.

(d) Endogeneity Concerns

As the large number of empirical studies on innovation and internationalization using CIS data have shown, innovation and internationalization are inherently endogenous. International collaboration is probably carried out by already highly innovative firms. A naïve regression of international collaboration on innovation measures may therefore result in biased estimates of reverse causality. This is also a long-existing issue in empirical studies that measure learning through exports (Cassiman & Golovko, 2010; Ito & Lechevalier, 2010). In an ideal situation, this can be captured – as a source of external knowledge – by longitudinal data on the innovation performance of firms prior to engagement in international collaborations. However, in the absence of such data, we have tried to achieve less biased results by adding appropriate control variables, such as organizational form and size; this is because headquarters of large MNCs can be examples of innovative firms that are also engaged in more international collaborations.

4. RESULTS

(a) Descriptive results

We begin by exploring the information on types of innovations and their degree of novelty in the two high-income and middle-income regions. Interestingly, Table 4 shows that firms with new-to-the-industry innovations have a higher number of

22
observations (44%) in comparison to firms with a lower degree of innovations, i.e. new-to-the-firm innovations (34%).

Table 4. Approx. here

In order to further explore the location of the firm, Table 5 shows the percentage of firms located in high-income or middle-income countries compared with the degree of innovations’ novelty. The descriptive result shows that no matter the type of region, the percentages of firms with new-to-the-world innovations are almost the same; with 24% of firms in high-income countries and 20% of firms in middle-income countries have indicated introducing new-to-the-world innovations in the last three years. This shows no significant difference with regard to “region type” and introducing new-to-the-world innovations. However, firms in high-income countries have more new-to-the-firm innovations (44%), whereas firms in middle-income economies have more new-to-the-industry innovations (52%). This is also confirmed in the multinomial logit models, as Model 2 shows; compared to firms located in middle-income countries, firms in high-income countries are less likely to have new-to-the-industry innovations (the negative and highly significant indicator).
Table 5. Approx. here

Table 6 lists the responses to the question about the main collaborators for the most important innovations. In line with previous research, the descriptive results of our data also confirm that customers have indeed been used as the main source of innovation.

Appendix A shows the correlation between all variables. It should be noted that variables with high correlation are due to interactions, or are subcategories of a more general variable; besides, they are not in the same models.

(b) Results

Tables 7 and 8 contain the results of the estimations. Results from our baseline model (Model 1) indicate that, in line with previous research on sources of innovation, firms with R&D and collaboration with universities are more likely to possess innovations which are both new to the industry and new to the world. Headquarters of MNCs are also more likely to have new-to-the-industry or new-to-the-world innovations.

Table 6. Approx. here

Appendix A shows the correlation between all variables. It should be noted that variables with high correlation are due to interactions, or are subcategories of a more general variable; besides, they are not in the same models.

(b) Results

Tables 7 and 8 contain the results of the estimations. Results from our baseline model (Model 1) indicate that, in line with previous research on sources of innovation, firms with R&D and collaboration with universities are more likely to possess innovations which are both new to the industry and new to the world. Headquarters of MNCs are also more likely to have new-to-the-industry or new-to-the-world innovations.

This table shows that, in the overall database, local customers are the main source of innovation (71%) and that customers from high-income countries (33%) are more used that those in middle-income economies (25%).
Model 2 contains only variables related to customer collaboration, no matter the location of customers or the firm. Model 3 has been expanded to include collaboration with international and/or local customers. Model 4 is the interaction between the focal firms’ location and international customers in general. Models 5 and 6 are the results of interplay between the matrix of producers’ locations and customers’ locations.

The results of Model 2 are in line with previous research, indicating that collaboration with customers will have a significant and positive impact on the degree of novelty; but this only matters for new-to-the-industry innovations, as we do not observe any significant impact on new-to-the-world innovations. For purely radical innovations, collaboration with customers (independent of location) does not have a meaningful impact. Moreover, as already discussed in the descriptive section, being located in high-income countries (region 1) will have a significant negative impact on the likelihood of introducing new-to-the-industry innovations in comparison to firms in middle-income countries.\(^{10}\)

In order to explore the role of international customers, we must first make a distinction between international customers and local customers (Model 3). The results suggest that collaboration with international customers has a highly positive impact on new-to-the-world innovations and new-to-the-industry innovations. It also indicates that once a distinction between local and international customers is made, we will see a positive impact, although collaboration with customers (Model 2) seems to have no impact on the degree of novelty. On the other hand, local customers do not have a significant impact on the degree of innovations’ novelty, which is also in line with previous studies showing that local resources do not have an impact on the likelihood of firms introducing radical innovations (Laursen, 2011; Weterings & Boschma, 2009).

\(^{10}\) This result is also consistent with Model 3.
Since regions and countries differ with regard to their technological capabilities (Fagerberg et al., 2007), we also make a distinction between the locations of the focal firms (producers). Therefore, Models 4–6 also include the location of the focal firm. Model 4 shows the likelihood of using international customers for firms in high-income countries and middle-income countries. The baseline is set at producers in middle-income countries that do not collaborate with international customers. This model confirms the role of international customers for firms in high-income countries. The results show that international customers in general have no significant impact on the likelihood of introducing new-to-the-industry or new-to-the-world innovations in firms located in middle-income countries. However, in this model we cannot interpret a positive or negative impact of customers from middle-income countries.

Table 7. Approx. here

Model 5 shows that although firms in middle-income countries are more likely to introduce new-to-the-industry innovations, those that have collaborated with customers in middle-income regions are highly and significantly more likely to introduce new-to-the-industry innovations. In order to further investigate the role of customers in middle-income countries, we have changed the baseline and found customers have a positive and significant effect on the likelihood of firms from middle-income economies introducing new-to-the-industry innovations. However, firms in high-income countries that have customers in middle-income countries are more likely to introduce new-to-the-world innovations.

11 The model is not presented here.
Model 6 indicates that firms from technologically advanced countries are more likely to have new-to-the-world innovations if they collaborate with customers from advanced countries. This model shows that collaborating with customers in high-income countries is not related to the degree of innovations’ novelty in firms from middle-income economies.

Table 8. Approx. here

Table 9 summarizes the main results. In line with previous research, new-to-the-world innovation is related to collaboration between international customers and firms located in high-income countries. This holds when collaborating with users in high-income countries, and with users in middle- and low-income countries. This means that rather than only adapting to the local market in developing countries, firms may use collaboration with customers located in those countries for the development of radical innovations.

For firms located in low- and middle-income countries, the results are also very interesting, since they show that collaboration with really advanced customers, such as those located in high-income countries, is not related to the degree of novelty. Rather, it is the collaboration with customers in other middle-income countries which is associated with new-to-the-industry innovations.
(c) Robustness Checks

As discussed earlier, the results can suffer from a reverse causality; while this cannot be controlled without longitudinal data, we have tried to control for reverse causality by using propensity score matching to obtain a more comparable sample (Becker & Ichino, 2002; Heckman, Ichimura, & Todd, 1997). The learning-by-exporting literature has also used this method extensively for the same problem (Cassiman & Golovko, 2010; Ito & Lechevalier, 2010). Propensity score matching involves “pairing treatment and comparison units that are similar in terms of their observable characteristics” (Dehejia & Wahba, 2002) p. 151). The instrumental variables are used to measure the invention activities of firms prior to collaboration with customers. In simple words, the sample will consist of firms that have collaborated with international customers (treated) matched with those that have not had collaboration with international customers (control), but are comparable based on instrumental variables.

We have used logistic regression specification to estimate the conditional probabilities of using international customers, and we have also chosen several conditioning (instrumental) variables: firm size, organizational form, industry, region, large share of export market, and R&D activities. After creating a new subsample, we ran Model 2; the results are similar to the original model, indicating that collaboration with international customers is not related to being a productive firm, but collaboration with international customers increases the likelihood of introducing more novel innovations.
5. CONCLUDING REMARKS

We began this paper by noting that user-producer interactions have been traditionally recognized as important for innovation. Hitherto, the discussion on user-producer interaction and its impact on the degree of novelty has been based exclusively on the evidence of producers and users located in advanced, high-income countries (Fitjar & Rodríguez-Pose, 2012; Laursen, 2011). However, with the growth of emerging economies’ markets and an increasing degree of technological sophistication of both users and producers in these markets (Ernst, 2005; Whang & Hobday, 2011), user-producer interaction is becoming global. The aim of this paper had been to understand the impact active collaboration with users for innovation has on the degree of novelty by focusing on the location of both users and producers.

In line with existing literature, our results show that geographical proximity to local customers is not related to new-to-the-world or new-to-the-industry innovation, but collaborating with international clients is associated to new-to-the-world innovation. However bringing the specific international locations of the user and the producer into the discussion provides very interesting insights.

Existing theory indicates that collaboration with international customers is positively related to radical innovations. But that assumes that users and producers are in the north—with high-technological capabilities and absorptive capacity-. Our findings suggests that this is not always the case as the specific location of both the international users and producers may affect the capacity of the firms to benefit from that interaction. For firms located in high-income countries, markets in low-income countries have traditionally been seen as a way to diffuse innovations developed in high-income countries. Thus, user-producer interaction is regarded more as sourcing information for the product
adaptation. However, the results of this study indicate that firms from advanced economies have also started to collaborate more closely with customers located in low- and middle-income countries to develop new-to-the-world innovation. In accordance with recent empirical studies, this can be related to technologically sophisticated customers, especially ones in Asian countries (Whang & Hobday, 2011; Yeung, 2007), that can be attributed to the countries’ expanding middle-class. It should be emphasized that our data refers explicitly to collaborations with customers on the development of the most important innovations, and not market adaptation (sourcing). Thus, active collaboration with customers located in low and middle income countries is related to new to the world innovations.

On the other hand, firms located in middle-income countries may have fewer technological resources, and consequently a less absorptive capacity. Collaborating with advanced customers located in high-income countries may be too difficult. However, collaborating with users located in other low- or middle-income countries may have a higher impact on the degree of novelty.

What our results suggest is that firms in low- and middle-income countries will benefit more from south-south collaborations than south-north ones, at least in terms of innovation, as the technological distance to the customer may be too large to actually facilitate learning and innovation in the firm. This corresponds with more recent studies (Whang & Hobday, 2011) that shed light on the fact that catch-up cannot only be limited to the supply side, as demand and user-producer interactions can also play a pivotal role in the advancement of nations.

As any exploratory analysis using novel, dedicated survey data, ours is characterized by important limitations. The most important ones relate to the sampling procedure and low response rate achieved in some of the countries and sectors. A second limitation is
the cross-sectional nature of the data, which does not allow us to capture causality between the collaboration with customers and the degree of novelty, but only if a significant relationship exists. Unfortunately, there is little reason to expect that quantitative innovation data of sufficient quality and geographical coverage will be available in the near future. The value of our study is therefore linked to the exploratory purpose that it serves, as providing some first evidence of the role of users and producers in low and middle income countries in the degree of novelty of innovations.

Our findings suggest several avenues for future research. Although we have been able to proxy for the absorptive capacity of the firm, our data has not allowed us to say much about the type of customer, apart from the location. Data on the degree of technological sophistication of the customer, as well as the technological distance between customer and producer, would provide a much more nuanced analysis of the implications of the geography of user and producer for innovation on a global scale.
Table 1. Survey results by country and industry

<table>
<thead>
<tr>
<th>Countries</th>
<th>ICT</th>
<th>Auto</th>
<th>Agro</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>69 (25.9%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>243 (2.7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>17 (14%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>324 (20.2%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>84 (16.9%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL middle-income</td>
<td>584 (5.34%)</td>
<td>69 (25.9%)</td>
<td>84 (16.9%)</td>
<td>737 (6.32%)</td>
</tr>
<tr>
<td>Denmark</td>
<td>49 (23.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>53 (4.7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>181 (11.9%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>171 (10.3%)</td>
<td>24 (14.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL high-income</td>
<td>352 (11.05%)</td>
<td>77 (6.18%)</td>
<td>49 (23.2%)</td>
<td>478 (10.59%)</td>
</tr>
<tr>
<td>Total</td>
<td>936 (6.59%)</td>
<td>146 (10.64%)</td>
<td>133</td>
<td>1215 (7.5%)</td>
</tr>
</tbody>
</table>
Table 2. User-producer interaction attending to location

<table>
<thead>
<tr>
<th>Users</th>
<th>High Income</th>
<th>Middle Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Income</td>
<td>Firms located in high income countries that collaborated with customers in high-income countries in the development of their most important innovation</td>
<td>Firms located in middle income countries that collaborated with customers in high-income countries in the development of their most important innovation</td>
</tr>
<tr>
<td>Middle/low income</td>
<td>Firms located in high income countries that collaborated with customers in low and middle-income countries in the development of their most important innovation</td>
<td>Firms located in middle income countries that collaborated with customers in low and middle-income countries in the development of their most important innovation</td>
</tr>
<tr>
<td>Explanatory Variables</td>
<td>Definition</td>
<td>type</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>Region</td>
<td>1: producers is in high income 0: producers in low/middle income countries.</td>
<td>dummy</td>
</tr>
<tr>
<td>Customer collaboration</td>
<td>1: yes 0: no</td>
<td>5 separate dummy variables</td>
</tr>
<tr>
<td>International Customer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customers in middle-income region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customers in high income region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region-international customers</td>
<td>0: producers in middle-income without international customers (baseline) 1: producers in middle-income countries that collaborate with international customers 2: producers in high-income countries without international customers 3: producers in high-income countries that collaborate with international customers</td>
<td>Categorical variable</td>
</tr>
<tr>
<td>Region-middle/low income customers</td>
<td>0: producers in high-income countries that have not collaborated with customers in middle-income countries (baseline) 1: producers in high-income countries that collaborated with customers in middle-income 2: producers in middle-income countries that collaborated with customers in middle-income 3: producers in middle-income countries that did that have not collaborated with customers in middle-income countries</td>
<td>Categorical variable</td>
</tr>
<tr>
<td>Region- high income customers</td>
<td>0: producers in middle-income countries that did not collaborate with customers in high-income (baseline) 1: producers in high income countries that collaborated with customers in high-income 2: producers in high-income countries that did not collaborated with customers in high-income countries 3: producers in middle-income countries that collaborated with customers in high-income countries</td>
<td>Categorical variable</td>
</tr>
</tbody>
</table>
Table 4. Degree of novelty of product innovations

<table>
<thead>
<tr>
<th>Product innovation</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>New to the Firm</td>
<td>300</td>
<td>34.09</td>
<td>34.09</td>
</tr>
<tr>
<td>New to the Industry</td>
<td>391</td>
<td>44.43</td>
<td>78.52</td>
</tr>
<tr>
<td>New to the World</td>
<td>189</td>
<td>21.48</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>880</td>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region type</th>
<th>new to firm</th>
<th>industry</th>
<th>new to world</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle income</td>
<td>28%</td>
<td>52%</td>
<td>20%</td>
<td>34%</td>
</tr>
<tr>
<td>High income</td>
<td>44%</td>
<td>32%</td>
<td>24%</td>
<td>44%</td>
</tr>
<tr>
<td>Total</td>
<td>34%</td>
<td>44%</td>
<td>22%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Table 6. Use of external sources of innovation

<table>
<thead>
<tr>
<th>Used sources</th>
<th>Frequency</th>
<th>Percentage of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td>798</td>
<td>72%</td>
</tr>
<tr>
<td>Suppliers</td>
<td>669</td>
<td>60%</td>
</tr>
<tr>
<td>Competitors</td>
<td>410</td>
<td>37%</td>
</tr>
<tr>
<td>Consultancy Group</td>
<td>440</td>
<td>40%</td>
</tr>
<tr>
<td>Government</td>
<td>380</td>
<td>34%</td>
</tr>
<tr>
<td>Universities</td>
<td>413</td>
<td>37%</td>
</tr>
</tbody>
</table>
Table 7. Results of the multinomial logit models 1-4 (baseline=new to firm)

<table>
<thead>
<tr>
<th>Variable</th>
<th>model 1</th>
<th>model 2</th>
<th>model 3</th>
<th>model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent/dependent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Collaboration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>industry</td>
<td>0.48**</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.237)</td>
<td>(0.289)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>world</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>baseline=middle income</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.70***</td>
<td>0.17</td>
<td>-0.68***</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>(0.201)</td>
<td>(0.240)</td>
<td>(0.201)</td>
<td>(0.243)</td>
</tr>
<tr>
<td>Intll Customer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.45**</td>
<td>0.75***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.214)</td>
<td>(0.249)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Customer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>world</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.16</td>
<td>-0.17</td>
<td>0.17</td>
<td>-0.11</td>
</tr>
<tr>
<td></td>
<td>(0.200)</td>
<td>(0.231)</td>
<td>(0.201)</td>
<td>(0.234)</td>
</tr>
<tr>
<td>Middle income firm-Intll Customer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.26</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.258)</td>
<td>(0.314)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>high income firm-no intll Customer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>world</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.77***</td>
<td>-0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.231)</td>
<td>(0.296)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High income firm-Intll Customer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>baseline=middle income firm with no international Customer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>world</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.334)</td>
<td>(0.356)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University collab</td>
<td>0.43**</td>
<td>0.46**</td>
<td>0.36**</td>
<td>0.41*</td>
</tr>
<tr>
<td></td>
<td>(0.174)</td>
<td>(0.21)</td>
<td>(0.179)</td>
<td>(0.179)</td>
</tr>
<tr>
<td>Export Market</td>
<td>0.061</td>
<td>0.353</td>
<td>-0.02</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>(0.193)</td>
<td>(0.223)</td>
<td>(0.196)</td>
<td>(0.228)</td>
</tr>
<tr>
<td>R&D</td>
<td>1.19***</td>
<td>1.23***</td>
<td>1.15***</td>
<td>1.22***</td>
</tr>
<tr>
<td></td>
<td>(0.177)</td>
<td>(0.220)</td>
<td>(0.180)</td>
<td>(0.221)</td>
</tr>
<tr>
<td>Medium</td>
<td>0.04</td>
<td>0.023</td>
<td>-0.23</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.212)</td>
<td>(0.252)</td>
<td>(0.226)</td>
<td>(0.269)</td>
</tr>
<tr>
<td>Large</td>
<td>-0.03</td>
<td>-0.2</td>
<td>-0.30</td>
<td>-0.14</td>
</tr>
<tr>
<td></td>
<td>(0.238)</td>
<td>(0.25)</td>
<td>(0.253)</td>
<td>(0.253)</td>
</tr>
<tr>
<td>Subsidiary</td>
<td>0.23</td>
<td>0.27</td>
<td>0.16</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(0.26)</td>
<td>(0.227)</td>
<td>(0.264)</td>
</tr>
<tr>
<td>Headquarter</td>
<td>0.79**</td>
<td>0.755**</td>
<td>0.70**</td>
<td>0.83**</td>
</tr>
<tr>
<td></td>
<td>(0.29)</td>
<td>(0.337)</td>
<td>(0.300)</td>
<td>(0.346)</td>
</tr>
<tr>
<td>Industry dummies (3)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>_cons</td>
<td>-0.78</td>
<td>-1.68</td>
<td>-0.68**</td>
<td>-2.05***</td>
</tr>
<tr>
<td></td>
<td>(0.29)</td>
<td>(0.337)</td>
<td>(0.300)</td>
<td>(0.346)</td>
</tr>
<tr>
<td>N</td>
<td>840</td>
<td>840</td>
<td>840</td>
<td>840</td>
</tr>
<tr>
<td>chi2</td>
<td>109.36</td>
<td>131.69</td>
<td>139.47</td>
<td>151.93</td>
</tr>
<tr>
<td>ll</td>
<td>-834.38</td>
<td>-823.22</td>
<td>-819.33</td>
<td>-813.10</td>
</tr>
<tr>
<td>pseudo R2</td>
<td>0.061</td>
<td>0.0741</td>
<td>0.0784</td>
<td>0.0854</td>
</tr>
</tbody>
</table>

Legend: * p<.1; ** p<.05; *** p<.01
Table 8. Results of the multinomial logit models 5 & 6 (baseline=new to firm)

<table>
<thead>
<tr>
<th>Variable</th>
<th>model5 industry</th>
<th>model5 world</th>
<th>model6 industry</th>
<th>model6 world</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Customer</td>
<td>0.13 (0.201)</td>
<td>-0.17 (0.233)</td>
<td>0.16 (0.202)</td>
<td>-0.12 (0.236)</td>
</tr>
<tr>
<td>High income firm with middle income customers</td>
<td>0.035 (0.481)</td>
<td>0.795* (0.454)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle income firm with middle income customers</td>
<td>1.07*** (0.309)</td>
<td>0.119 (0.367)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle income firm with no middle income customers</td>
<td>0.593** (0.215)</td>
<td>-0.057 (0.264)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>baseline= High income firm with no middle income customers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High income customers</td>
<td>0.25 (0.230)</td>
<td>0.49* (0.263)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High income firm with high income customer</td>
<td></td>
<td>-1.384484 (0.346)</td>
<td>1.11** (0.363)</td>
<td></td>
</tr>
<tr>
<td>High income firm with no high income customer</td>
<td>-0.821*** (0.226)</td>
<td>-0.321 (0.284)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle income firm with high income customer</td>
<td>-0.117 (0.281)</td>
<td>-0.359 (0.34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>baseline= Low income firm with no high income customers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-income customers</td>
<td></td>
<td>0.47* (0.256)</td>
<td>0.55* (0.294)</td>
<td></td>
</tr>
<tr>
<td>University collab</td>
<td>0.34* (0.180)</td>
<td>0.44** (0.180)</td>
<td>0.36** (0.180)</td>
<td>0.44** (0.180)</td>
</tr>
<tr>
<td>Export Market</td>
<td>-0.22 (0.233)</td>
<td>-0.06 (0.235)</td>
<td>-0.20 (0.235)</td>
<td>-0.01 (0.235)</td>
</tr>
<tr>
<td>R&D</td>
<td>1.15*** (0.180)</td>
<td>1.17*** (0.223)</td>
<td>1.11*** (0.181)</td>
<td>1.10*** (0.225)</td>
</tr>
<tr>
<td>Medium</td>
<td>-0.19 (0.227)</td>
<td>0.08 (0.271)</td>
<td>-0.20 (0.228)</td>
<td>0.11 (0.273)</td>
</tr>
<tr>
<td>Large</td>
<td>-0.35 (0.255)</td>
<td>-0.14 (0.256)</td>
<td>-0.31 (0.256)</td>
<td>-0.09 (0.256)</td>
</tr>
<tr>
<td>Subsidiary</td>
<td>0.04 (0.231)</td>
<td>0.24 (0.232)</td>
<td>0.10 (0.232)</td>
<td>0.30 (0.232)</td>
</tr>
<tr>
<td>Headquarter</td>
<td>0.67** (0.299)</td>
<td>0.78** (0.347)</td>
<td>0.68** (0.299)</td>
<td>0.83** (0.347)</td>
</tr>
<tr>
<td>_cons</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>N</td>
<td>840</td>
<td>840</td>
<td>840</td>
<td>840</td>
</tr>
<tr>
<td>chi2</td>
<td>143.54</td>
<td>154.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ll</td>
<td>817.29</td>
<td>-811.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pseudo R2</td>
<td>0.0807</td>
<td>0.0870</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

legend: * p<.1; ** p<.05; *** p<.01
Table 9. Summary of results

<table>
<thead>
<tr>
<th>Users</th>
<th>Producers</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Income</td>
<td>High Income</td>
</tr>
<tr>
<td>Middle/low income</td>
<td>Middle income</td>
</tr>
<tr>
<td>New to the world</td>
<td>New to the world</td>
</tr>
<tr>
<td>No effect of the degree of novelty</td>
<td>New to the industry</td>
</tr>
</tbody>
</table>
REFERENCES

Appendix A: Correlation between main variables (n=880)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) New to firm</td>
<td>0.610</td>
<td>0.488</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(2) New to industry</td>
<td>1.116</td>
<td>0.994</td>
<td>-0.40</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(3) New to world</td>
<td>0.644</td>
<td>1.233</td>
<td>-0.23</td>
<td>-0.03</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(4) Customer collaboration</td>
<td>0.840</td>
<td>0.367</td>
<td>0.01</td>
<td>0.10</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(5) International Customer</td>
<td>0.397</td>
<td>0.489</td>
<td>-0.08</td>
<td>0.13</td>
<td>0.14</td>
<td>0.35</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(6) Local Customer</td>
<td>0.717</td>
<td>0.451</td>
<td>0.06</td>
<td>0.07</td>
<td>-0.03</td>
<td>0.70</td>
<td>-0.05</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(7) Customers in middle-income region</td>
<td>0.248</td>
<td>0.432</td>
<td>-0.09</td>
<td>0.12</td>
<td>0.09</td>
<td>0.25</td>
<td>0.71</td>
<td>0.004</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(8) Customers in high income region</td>
<td>0.334</td>
<td>0.472</td>
<td>-0.08</td>
<td>0.11</td>
<td>0.13</td>
<td>0.31</td>
<td>0.87</td>
<td>-0.04</td>
<td>0.50</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(9) Emerging economies</td>
<td>0.613</td>
<td>0.487</td>
<td>-0.28</td>
<td>0.18</td>
<td>-0.04</td>
<td>-0.07</td>
<td>0.14</td>
<td>-0.12</td>
<td>0.23</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(10) High-income</td>
<td>0.388</td>
<td>0.487</td>
<td>0.28</td>
<td>-0.18</td>
<td>0.04</td>
<td>0.07</td>
<td>-0.14</td>
<td>0.12</td>
<td>-0.23</td>
<td>-0.09</td>
<td>-1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(11) Univ. collaboration</td>
<td>0.442</td>
<td>0.497</td>
<td>-0.07</td>
<td>0.11</td>
<td>0.07</td>
<td>0.22</td>
<td>0.23</td>
<td>0.14</td>
<td>0.25</td>
<td>0.21</td>
<td>-0.11</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(12) Export market</td>
<td>0.319</td>
<td>0.466</td>
<td>-0.13</td>
<td>0.06</td>
<td>0.09</td>
<td>0.10</td>
<td>0.55</td>
<td>-0.16</td>
<td>0.48</td>
<td>0.52</td>
<td>0.20</td>
<td>-0.20</td>
<td>0.21</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(13) R&D</td>
<td>0.631</td>
<td>0.483</td>
<td>-0.24</td>
<td>0.26</td>
<td>0.12</td>
<td>0.05</td>
<td>0.19</td>
<td>-0.02</td>
<td>0.16</td>
<td>0.19</td>
<td>0.22</td>
<td>-0.22</td>
<td>0.15</td>
<td>0.19</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(14) Small</td>
<td>0.442</td>
<td>0.497</td>
<td>0.13</td>
<td>-0.11</td>
<td>-0.05</td>
<td>-0.06</td>
<td>-0.20</td>
<td>-0.01</td>
<td>-0.22</td>
<td>-0.20</td>
<td>-0.45</td>
<td>0.45</td>
<td>-0.19</td>
<td>-0.23</td>
<td>-0.23</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(15) Medium</td>
<td>0.280</td>
<td>0.449</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.06</td>
<td>0.01</td>
<td>0.03</td>
<td>0.04</td>
<td>0.19</td>
<td>-0.19</td>
<td>0.08</td>
<td>0.08</td>
<td>0.06</td>
<td>-0.55</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16) Large</td>
<td>0.267</td>
<td>0.443</td>
<td>-0.11</td>
<td>0.09</td>
<td>0.01</td>
<td>-0.00</td>
<td>0.16</td>
<td>0.002</td>
<td>0.22</td>
<td>0.18</td>
<td>0.29</td>
<td>-0.29</td>
<td>0.13</td>
<td>0.17</td>
<td>0.18</td>
<td>-0.54</td>
<td>-0.38</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(17) Standalones</td>
<td>0.611</td>
<td>0.488</td>
<td>0.19</td>
<td>-0.16</td>
<td>-0.05</td>
<td>0.10</td>
<td>-0.20</td>
<td>0.11</td>
<td>-0.22</td>
<td>-0.19</td>
<td>-0.39</td>
<td>0.39</td>
<td>-0.05</td>
<td>-0.17</td>
<td>-0.24</td>
<td>0.40</td>
<td>-0.08</td>
<td>-0.35</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(18) Subsidiary</td>
<td>0.227</td>
<td>0.419</td>
<td>-0.08</td>
<td>0.05</td>
<td>0.05</td>
<td>-0.08</td>
<td>0.22</td>
<td>-0.16</td>
<td>0.23</td>
<td>0.20</td>
<td>0.23</td>
<td>-0.23</td>
<td>0.01</td>
<td>0.16</td>
<td>0.10</td>
<td>-0.23</td>
<td>0.00</td>
<td>0.24</td>
<td>-0.68</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(19) Headquarter</td>
<td>0.138</td>
<td>0.345</td>
<td>-0.17</td>
<td>0.13</td>
<td>0.04</td>
<td>-0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.06</td>
<td>0.05</td>
<td>0.22</td>
<td>-0.22</td>
<td>0.09</td>
<td>0.09</td>
<td>0.18</td>
<td>-0.23</td>
<td>0.10</td>
<td>0.17</td>
<td>-0.50</td>
<td>-0.22</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(20) ICT</td>
<td>0.793</td>
<td>0.405</td>
<td>-0.15</td>
<td>0.03</td>
<td>-0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.03</td>
<td>0.08</td>
<td>-0.08</td>
<td>0.05</td>
<td>0.08</td>
<td>0.16</td>
<td>0.14</td>
<td>-0.01</td>
<td>-0.15</td>
<td>-0.07</td>
<td>-0.04</td>
<td>0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(21) Auto</td>
<td>0.111</td>
<td>0.315</td>
<td>0.11</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.03</td>
<td>0.09</td>
<td>-0.04</td>
<td>0.04</td>
<td>-0.13</td>
<td>0.13</td>
<td>-0.02</td>
<td>-0.10</td>
<td>-0.06</td>
<td>-0.16</td>
<td>0.05</td>
<td>0.14</td>
<td>0.00</td>
<td>0.05</td>
<td>-0.08</td>
<td>-0.69</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(22) Agrofood</td>
<td>0.093</td>
<td>0.291</td>
<td>0.10</td>
<td>-0.06</td>
<td>-0.02</td>
<td>-0.12</td>
<td>-0.06</td>
<td>-0.13</td>
<td>-0.03</td>
<td>-0.09</td>
<td>0.02</td>
<td>-0.02</td>
<td>-0.03</td>
<td>-0.001</td>
<td>0.15</td>
<td>-0.03</td>
<td>-0.03</td>
<td>0.07</td>
<td>0.10</td>
<td>0.003</td>
<td>-0.12</td>
<td>-0.63</td>
<td>-0.11</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CIRCLE ELECTRONIC WORKING PAPERS SERIES (EWP)

CIRCLE (Centre for Innovation, Research and Competence in the Learning Economy) is a multidisciplinary research centre set off by several faculties at Lund University and Blekinge Institute of Technology. CIRCLE has a mandate to conduct multidisciplinary research and education on the following issues: Long-term perspectives on innovation, structural change and economic growth, Entrepreneurship and venture capital formation with a special focus on new ventures, The dynamics of R&D systems and technological systems, including their impact on entrepreneurship and growth, Regional innovation systems in different national and international contexts and International comparative analyses of national innovation systems. Special emphasis is done on innovation policies and research policies. 10 nationalities and 14 disciplines are represented among the CIRCLE staff.

The CIRCLE Electronic Working Paper Series are intended to be an instrument for early dissemination of the research undertaken by CIRCLE researchers, associates and visiting scholars and stimulate discussion and critical comment.

The working papers present research results that in whole or in part are suitable for submission to a refereed journal or to the editor of a book or have already been submitted and/or accepted for publication.

CIRCLE EWPs are available on-line at: http://www.circle.lu.se/?page_id=176

Available papers:

2013

WP 2013/01
Start-up rates, Entrepreneurship Culture and the Business Cycle Swedish patterns from national and regional data
Martin Andersson

WP 2013/02
Market Thickness and the Early Labor Market Career of University Graduates - An urban advantage?
Lina Ahlin, Martin Andersson and Per Thulin

WP 2013/03
Implementing an R&D Strategy without Prior R&D-Experience - Recruitment as a Source of R&D-related Routines and Capabilities?
Lina Ahlin, Martin Andersson and Thorben Schubert

WP 2013/04
The Choice of Innovation Policy Instruments
Susana Borrás, Charles Edquist

WP 2013/05
What Does Evolutionary Economic Geography Bring To The Policy Table? Reconceptualising regional innovation systems
Bjørn Asheim, Markus M. Bugge, Lars Coenen, Sverre Herstad

WP 2013/06
Commercializing clean technology innovations – the emergence of new business in an agency-structure perspective
Sofia Avdeitchikova, Lars Coenen

WP 2013/07
Renewal of mature industry in an old industrial region: regional innovation policy and the co-evolution of institutions and technology
Lars Coenen, Jerker Moodysson and Hanna Martin

WP 2013/08
Systematic anchoring of global innovation processes and new industry formation – the emergence of on-site water recycling in China
Christian Binz, Bernhard Truffer and Lars Coenen

WP 2013/09
The internationalisation of R&D: sectoral and geographic patterns of cross-border investments
Cristina Castelli and Davide Castellani

WP 2013/10
Clean-tech innovation in Emerging Economies: Transnational dimensions in technological innovation system formation
Jorrit Gosens, Yonglong Lu and Lars Coenen

WP 2013/11
Why space matters in technological innovation systems – the global knowledge dynamics of membrane bioreactor technology
Christian Binz, Bernhard Truffer and Lars Coenen

WP 2013/12
MNC affiliation, knowledge bases and involvement in global innovation networks
Sverre J. Herstad, Bernd Ebensberger, Bjørn Asheim

WP 2013/13
System Failures, Knowledge Bases and Regional Innovation Policies
Roman Martin and Michaela Trippl

WP 2013/14
Differentiated Knowledge Bases and the Nature of Innovation Networks
Roman Martin

WP 2013/15
The Geography and Structure of Global Innovation Networks: A Knowledge Base Perspective
Ju Liu, Cristina Chaminade, Bjørn Asheim

WP 2013/16
The spatiality of trust – Antecedents of trust and the role of face-to-face contacts
WP 2013/17
Technology-Driven FDI: A Survey of the Literature
Alessia Amighini; Claudio Cozza; Elisa Giuliani; Roberta Rabellotti; Vittoria Scalera

WP 2013/18
Substitution or overlap? The relations between geographical and non-spatial proximity dimensions in collaborative innovation projects
Tess Hansen

WP 2013/19
Entrepreneurship and the Business Cycle: Do New Technology-Based Firms Differ?
Olof Ejermo and Jing Xiao

WP 2013/20
R&D offshore and the productivity growth of European regions
Davide Castellani and Fabio Pieri

WP 2013/21
On the link between urban location and the involvement of knowledge intensive business services firms in collaboration networks
Sverre J. Herstad and Bernd Ebersberger

WP 2013/22
Services vs. Manufacturing – How Does Foreign and Domestic Sales Impact on their R&D?
Olof Ejermo and Karin Bergman

WP 2013/23
Combining knowledge from different sources, channels and geographical scales
Markus Grillitsch and Michaela Tripl

WP 2013/24
Technological competencies and firm performance: Analyzing the importance of internal and external competencies
Markus Grillitsch and Magnus Nilsson

WP 2013/25
Physical Planning in Entrepreneurial Urban Governance – Experiences from the Bo01 and Brunnsköpig Projects, Sweden
Ana Matalda Madureira

WP 2013/26
Understanding the diversity of cooperation on innovation across countries: Multilevel evidence from Europe
Martin Shholec

WP 2013/27
User-producer interaction and the degree of novelty of innovations: a global perspective
Gouya Harirchi and Cristina Chaminade

2012

WP 2012/01
Is the University Model an Organizational Necessity? Scale and Agglomeration Effects in Science
Tasso Brandt and Torben Schubert

WP 2012/02
Do regions make a difference? Exploring the role of different regional innovation systems in global innovation networks in the ICT industry
Cristina Chaminade and Monica Plechero

WP 2012/03
Measuring the knowledge base of regional innovation systems in Sweden
Roman Martin

WP 2012/04
Characteristics and Performance of New Firms and Spinoffs in Sweden
Martin Andersson and Steven Klepper

WP 2012/05
Demographic patterns and trends in patenting: Gender, age, and education of inventors
Olof Ejermo and Taehyun Jung

WP 2012/06
Competences as drivers and enablers of globalization of innovation: Swedish ICT industry and emerging economies
Cristina Chaminade and Claudia de Fuentes

WP 2012/07
The Dynamics and Evolution of Local Industries – The case of Linköping
Sabrina Fredin

WP 2012/08
Towards a Richer Specification of the Exploration/Exploitation Trade-off: Hidden Knowledge-based Aspects and Empirical Results for a Set of Large R&D-Performing Firms
Torben Schubert and Peter Neuhausler

WP 2012/09
The European Spallation Source (ESS) and the geography of innovation
Josephine V. Rakers

WP 2012/10
How Local are Spatial Density Externalities? – Evidence from square grid data
Martin Andersson, Johan Raasson, Johan P Larsson

WP 2012/11
Why Pre-Commercial Procurement is not Innovation Procurement
Charles Edquist, Jon Mikael Zabala-Ituragarita
WP 2011/01
SMEs’ absorptive capacities and large firms’ knowledge spillovers: Micro evidence from Mexico
Claudia de Fuentes and Gabriela Dutrénit

WP 2011/02
Comparing knowledge bases: on the organisation and geography of knowledge flows in the regional innovation system of Scania, southern Sweden
Roman Martin and Jerker Moodysson

WP 2011/03
Organizational paths of commercializing patented inventions: The effects of transaction costs, firm capabilities, and collaborative ties
Taehyun Jung and John P. Walsh

WP 2011/04
Global Innovation Networks: towards a taxonomy
Helena Barnard and Cristina Chaminade

WP 2011/05
Swedish Business R&D and its Export Dependence
Karim Bergman and Olof Ejermo

WP 2011/06
Innovation Policy Design: Identification of Systemic Problems
Charles Edquist

WP 2011/07
Regional Institutional Environment and Its Impact on Intra-firm and Inter-organisational Innovation Networks: A Comparative Case Study in China and Switzerland
Ju Liu

WP 2011/08
Entrepreneurship: Exploring the Knowledge Base
Hans Landström, Gouya Harirchi and Fredrik Aulin

WP 2011/09
Policy coordination in systems of innovation: A structural-functional analysis of regional industry support in Sweden
Magnus Nilsson and Jerker Moodysson

WP 2011/10
Urban Design in Neighbourhood Commodification
Ana Matalda Madureira

WP 2011/11
Technological Dynamics and Social Capability: Comparing U.S. States and European Nations
Jan Fagerberg, Maryan Feldman and Martin Sihostec

WP 2011/12
Linking scientific and practical knowledge in innovation systems
Arne Isaksen and Magnus Nilsson

WP 2011/13
Institutional conditions and innovation systems: on the impact of regional policy on firms in different sectors
Jerker Moodysson and Elena Zukauskate

WP 2011/14
Considering adoption: Towards a consumption-oriented approach to innovation
Josephine V. Rekers

WP 2011/15
Exploring the role of regional innovation systems and institutions in global innovation networks
Cristina Chaminade

2010

WP 2010/01
Innovation policies for development: towards a systemic experimentation based approach
Cristina Chaminade, Bengt-Ake Lundvall, Jan Vrang-Laudson and KJ Joseph

WP 2010/02
From Basic Research to Innovation: Entrepreneurial Intermediaries for Research Commercialization at Swedish ‘Strong Research Environments’
Fumi Kitagawa and Caroline Wigren

WP 2010/03
Different competences, different modes in the globalization of innovation? A comparative study of the Pune and Beijing regions
Monica Plechero and Cristina Chaminade

WP 2010/04
Technological Capability Building in Informal Firms in the Agricultural Subsistence Sector in Tanzania: Assessing the Role of Gatsby Clubs
Astrid Szogs and Kelefa Mwantima

WP 2010/05
The Swedish Paradox – Unexploited Opportunities!
Charles Edquist

WP 2010/06
A three-stage model of the Academy-Industry linking process: the perspective of both agents
Claudia De Fuentes and Gabriela Dutrénit

WP 2010/07
Innovation in symbolic industries: the geography and organisation of knowledge sourcing
Roman Martin and Jerker Moodysson

WP 2010/08
Towards a spatial perspective on sustainability transitions
Lars Coenen, Paul Banneworth and Bernhard Truffer
WP 2010/09
The Swedish national innovation system and its relevance for the emergence of global innovation networks
Cristina Chaminade, Jon Mikel Zabala and Adele Treccani

WP 2010/10
Who leads Research Productivity Change? Guidelines for R&D policy makers
Fernando Jiménez-Sáez, Jon Mikel Zabala and José L. Zofío

WP 2010/11
Research councils facing new science and technology
Frank van der Most and Barend van der Meulen

WP 2010/12
Effect of geographical proximity and technological capabilities on the degree of novelty in emerging economies
Monica Plechero

WP 2010/13
Are knowledge-bases enough? A comparative study of the geography of knowledge sources in China (Great Beijing) and India (Pune)
Cristina Chaminade

WP 2010/14
Regional Innovation Policy beyond ‘Best Practice’: Lessons from Sweden
Roman Martin, Jerker Moodysson and Elena Zukauskaite

WP 2010/15
Innovation in cultural industries: The role of university links
Elena Zukauskaite

WP 2010/16
Use and non-use of research evaluation. A literature review
Frank van der Most

WP 2010/17
Upscaling emerging niche technologies in sustainable energy: an international comparison of policy approaches
Lars Coenen, Roald Suurs and Emma van Sandick

2009

WP 2009/01
Building systems of innovation in less developed countries: The role of intermediate organizations.
Szögs, Astrid; Cummings, Andrew and Chaminade, Cristina

WP 2009/02
The Widening and Deepening of Innovation Policy: What Conditions Provide for Effective Governance?
Borrás, Susana

WP 2009/03
Managerial learning and development in small firms: implications based on observations of managerial work
Gabrielson, Jonas and Tell, Joakim

WP 2009/04
University professors and research commercialization: An empirical test of the “knowledge corridor” thesis
Gabrielson, Jonas, Politis, Diamanto and Tell, Joakim

WP 2009/05
On the concept of global innovation networks
Chaminade, Cristina

WP 2009/06
Technological Waves and Economic Growth - Sweden in an International Perspective 1850-2005
Schön, Lennart

WP 2009/07
Public Procurement of Innovation Diffusion: Exploring the Role of Institutions and Institutional Coordination
Hofstam, Max; Phillips, Wendy and Bakker, Elmer

WP 2009/08
Local niche experimentation in energy transitions: a theoretical and empirical exploration of proximity advantages and disadvantages
Lars Coenen, Rob Raven, Geert Verbong

WP 2009/09
Product Development Decisions: An empirical approach to Krishnan and Ulrich
Jon Mikel Zabala, Tina Hannemann

WP 2009/10
Dynamics of a Technological Innovator Network and its impact on technological performance
Ju Liu, Cristina Chaminade

WP 2009/11
The Role of Local Universities in Improving Traditional SMEs Innovative Performances: The Veneto Region Case
Monica Plechero

WP 2009/12
Comparing systems approaches to innovation and technological change for sustainable and competitive economies: an explorative study into conceptual commonalities, differences and complementarities
Coenen, Lars and Díaz López, Fernando J.

WP 2009/13
Public Procurement for Innovation (PPI) – a Pilot Study
Charles Edquist

WP 2009/14
Outputs of innovation systems: a European perspective
Charles Edquist and Jon Mikel Zabala

2008
WP 2007/03
Global-local linkages, Spillovers and Cultural Clusters: Theoretical and Empirical insights from an exploratory study of Toronto’s Film Cluster
Vang, Jan; Chaminade, Cristina

WP 2007/04
Learning from the Bangalore Experience: The Role of Universities in an Emerging Regional Innovation System
Vang, Jan; Chaminade, Cristina; Coenen, Lars

WP 2007/05
Industrial dynamics and innovative pressure on energy -Sweden with European and Global outlooks
Schön, Lennart; Kander, Astrid

WP 2007/06
In defence of electricity as a general purpose technology
Kander, Astrid; Enflo, Kerstin; Schön, Lennart

WP 2007/07
Swedish business research productivity – improvements against international trends
Ejermo, Olof; Kander, Astrid

WP 2007/08
Regional innovation measured by patent data – does quality matter?
Ejermo, Olof

WP 2007/09
Innovation System Policies in Less Successful Developing countries: The case of Thailand
Intarakumnerd, Patarapong; Chaminade, Cristina

2006

WP 2006/01
The Swedish Paradox
Ejermo, Olof; Kander, Astrid

WP 2006/02
Building RIS in Developing Countries: Policy Lessons from Bangalore, India
Vang, Jan; Chaminade, Cristina

WP 2006/03
Innovation Policy for Asian SMEs: Exploring cluster differences
Chaminade, Cristina; Vang, Jan.

WP 2006/04
Rationales for public intervention from a system of innovation approach: the case of VINNOVA.
Chaminade, Cristina; Edquist, Charles

WP 2006/05
Technology and Trade: an analysis of technology specialization and export flows
Andersson, Martin; Ejermo, Olof

WP 2006/06
A Knowledge-based Categorization of Research-based Spin-off Creation
Gabrielsson, Jonas; Landsström, Hans; Brunsnes, E. Thomas

WP 2006/07
Board control and corporate innovation: an empirical study of small technology-based firms
Gabrielsson, Jonas; Politis, Diamanto

WP 2006/08
On and Off the Beaten Path: Transferring Knowledge through Formal and Informal Networks
Rick Aalbers; Otto Koppius; Wilfred Dolfsma

WP 2006/09
Trends in R&D, innovation and productivity in Sweden 1985-2002
Ejermo, Olof; Kander, Astrid

WP 2006/10
Development Blocks and the Second Industrial Revolution, Sweden 1900-1974
Enflo, Kerstin; Kander, Astrid; Schön, Lennart

WP 2006/11
The uneven and selective nature of cluster knowledge networks: evidence from the wine industry
Giuliani, Elisa

WP 2006/12
Informal investors and value added: The contribution of investors’ experientially acquired resources in the entrepreneurial process
Politis, Diamanto; Gabrielsson, Jonas

WP 2006/13
Informal investors and value added: What do we know and where do we go?
Politis, Diamanto; Gabrielsson, Jonas

WP 2006/14
Inventive and innovative activity over time and geographical space: the case of Sweden
Ejermo, Olof

2005

WP 2005/1
Constructing Regional Advantage at the Northern Edge
Coenen, Lars; Asheim, Bjørn

WP 2005/02
From Theory to Practice: The Use of the Systems of Innovation Approach for Innovation Policy
WP 2005/03
The Role of Regional Innovation Systems in a Globalising Economy: Comparing Knowledge Bases and Institutional Frameworks in Nordic Clusters
Asheim, Bjørn; Coenen, Lars

WP 2005/04
How does Accessibility to Knowledge Sources Affect the Innovativeness of Corporations? Evidence from Sweden
Andersson, Martin; Ejermo, Olof

WP 2005/05
Contextualizing Regional Innovation Systems in a Globalizing Learning Economy: On Knowledge Bases and Institutional Frameworks
Asheim, Bjørn; Coenen, Lars

WP 2005/06
Innovation Policies for Asian SMEs: An Innovation Systems Perspective
Chaminade, Cristina; Vang, Jan

WP 2005/07
Contextualizing Regional Innovation Systems in a Globalizing Economy: On Knowledge Bases and Institutional Frameworks
Asheim, Bjørn; Coenen, Lars

WP 2005/08
Corporate Innovation and competitive environment
Huse, M; Neubaum, Donald O.; Gabrielson, Jonas

WP 2005/09
Knowledge and accountability: Outside directors’ contribution in the corporate value chain
Huse, Morten; Gabrielson, Jonas; Minichilli, Alessandro

WP 2005/10
Rethinking the Spatial Organization of Creative Industries
Vang, Jan

WP 2005/11
Interregional Inventor Networks as Studied by Patent Co-inventorships
Ejermo, Olof; Karlsson, Charlie

WP 2005/12
Knowledge Bases and Spatial Patterns of Collaboration: Comparing the Pharma and Agro-Food Bioregions Scania and Saskatoon
Coenen, Lars; Moodysson, Jerker; Ryan, Camille; Asheim, Bjørn; Phillips, Peter

WP 2005/13
Regional Innovation System Policy: a Knowledge-based Approach
Asheim, Bjørn; Coenen, Lars; Moodysson, Jerker; Vang, Jan

WP 2005/14
Face-to-Face, Buzz and Knowledge Bases: Socio-spatial implications for learning and innovation policy
Asheim, Bjørn; Coenen, Lars; Vang, Jan

WP 2005/15
The Creative Class and Regional Growth: Towards a Knowledge Based Approach
Kalsø Hansen, Høgni; Vang, Jan; Bjørn T. Asheim

WP 2005/16
Emergence and Growth of Mjärdevi Science Park in Linköping, Sweden
Hommen, Leif; Doloreux, David; Larsson, Emma

WP 2005/17
Trademark Statistics as Innovation Indicators? – A Micro Study
Malmberg, Claes