On the link between urban location and the involvement of knowledge intensive business services firms in collaboration networks

Sverre J. Herstad (sverre.herstad@nifu.no)
University of Agder

Bernd Ebersberger (bernd.ebersberger@mci.edu)
MCI Management Center Innsbruck

This is a preprint of an article whose final and definitive form will be published in Regional Studies © [2013] [copyright Taylor & Francis]; Regional Studies is available online at Taylor & Francis™
http://www.tandfonline.com/toc/cres20/current#.UbrTDfk3Aps.

Citations to and quotations from this work should reference that publication. If you use this work, please check that the published form contains precisely the material to which you intend to refer.

This version: June 2013

Centre for Innovation, Research and Competence in the Learning Economy (CIRCLE)
Lund University
P.O. Box 117, Sövågatan 16, S-221 00 Lund, SWEDEN
http://www.circle.lu.se/publications
On the link between urban location and the involvement of knowledge intensive business services firms in collaboration networks
Sverre J. Herstad and Bernd Ebersberger

ABSTRACT
Knowledge intensive business services firms can play a key role in modern economies by linking localized collaboration networks to global knowledge flows, and by actively serving in support of knowledge diffusion across institutional and sectoral divides. The extent to which they do is dependent on the markets, partners and human resources available locally. This paper uses the unique establishment-level innovation data available in Norway to investigate whether location in urban labour market regions influences the geographical scope of collaborative linkages maintained within and outside the realm of clients. It proceeds to consider whether the diversity of partner types used locally, domestically and abroad differ between locations.

JEL Code: L80, O31, R11

Keywords: knowledge intensive business services, urban economies, collaboration, internationalization,

Disclaimer: All the opinions expressed in this paper are the responsibility of the individual author or authors and do not necessarily represent the views of other CIRCLE researchers.
On the link between urban location and the involvement of knowledge intensive business services firms in collaboration networks

Sverre J. Herstad
University of Agder, PO BOX 422, N-4604 Kristiansand, Norway; and NIFU, PO BOX 5183 Majorstuen, N-0302 Oslo, Norway.
Corresponding author. Mail to: sverre.herstad@nifu.no

Bernd Ebersberger
Management Center Innsbruck, Universitätsstraße 15, 6020 Innsbruck, Austria

May 2013

Forthcoming, Regional Studies

Abstract
Knowledge intensive business services firms can play a key role in modern economies by linking localized collaboration networks to global knowledge flows, and by actively serving in support of knowledge diffusion across institutional and sectoral divides. The extent to which they do is dependent on the markets, partners and human resources available locally. This paper uses the unique establishment-level innovation data available in Norway to investigate whether location in urban labour market regions influences the geographical scope of collaborative linkages maintained within and outside the realm of clients. It proceeds to consider whether the diversity of partner types used locally, domestically and abroad differ between locations.

Keywords: knowledge intensive business services, urban economies, collaboration, internationalization,

JEL: L80, O31, R11
Introduction
Knowledge intensive business service firms (hereby refereed to only as KIBS) are positioned at the intersection between corporate demand for specialized knowledge, and the supply of this knowledge from various actors, institutions and locations. This means that KIBS can play a key role in modern economies by linking localized networks to global knowledge flows and by supporting knowledge diffusion across institutional and sectoral divides (Desroches & Lepälä, 2011). The extent to which they fulfil this role depends on the number of different business contexts covered by the network linkages they maintain. This can be referred to as the geographical scope of networks (Fernhaber, Gilbert, & McDougall, 2008). It also depends on the diversity of partner types used and thus cognitive domains covered, which can be referred to as their network breadth (Herstad, Bloch, Ebersberger, & van de Velde, 2008; Laursen & Salter, 2006). This paper is inspired by the notion that it is primarily KIBS in certain high-density urban agglomerations which exhibit behaviour conducive to such positioning (Wood, 2006). Hence, the paper seeks to investigate the legitimacy of this claim with particular emphasis on various aspects of internationalisation. In doing so, it addresses not only the question of whether urban economies influence the network behaviour of firms, but also how and why.

Methodologically, it extends the concepts of scope and breadth on the basis of recent contributions which have introduced the concept of network involvement (e.g. Ebersberger & Herstad, 2013, Herstad, Aslesen & Ebersberger, forthc). The empirical approach developed has two important advantages. First, this allows different locational impacts on the geographical scope of sales and various forms of innovation collaboration to be distinguished from each other. Second, it allows the breadth of collaborative linkages maintained at several spatial scales - locally, domestically outside own region and abroad - to be understood in relation to the background characteristics of the regional economy.

The empirical analysis uses establishment-level data for Norway, available through the Community Innovation Survey (CIS), to identify and delineate service-providing firms, establish the link between networking behaviour and various urban or non-urban labour market regions, and control for impacts on behaviour attributable to firm-specific characteristics such as size, IPR strategies and investments in innovation.

Conceptual framework & hypotheses
Research on territorial innovation systems has traditionally put a strong emphasis on interactive learning by means of collaborative ties. This study is therefore not the first to consider potential relationships between locations and collaboration in various industries (Cumbers, MacKinnon, & Chapman, 2003; Laursen, Masciarelli, & Prencia, 2012; Laursen, Reichstein, & Salter, 2011). Yet, prior research is inconclusive with respect to the existence and strength of these relationships. Some studies have found positive associations between the density of related economic activity in an area and patterns of collaboration (Bennett, Robson, & Bratton, 2001). In the context of services, it has been suggested that these linkages are particularly evident in sub-clusters of capital regions (Wood, 2006). Others claim that a direct relationship between urbanization and behaviour is far from apparent (Amin & Thrift, 2002; Fritsch, 2003). Some have even argued that firms located in rural areas (Teirlinck & Spithoven, 2008) or outside the capital region (Herstad, Pålshaugen, & Ebersberger, 2011; Tödtling & Trippl, 2005) may be more ‘open’ in their innovation processes.
Despite this, no prior study has to our knowledge used large, representative-sample innovation micro data to investigate whether the networking behaviour of services firms differs systematically, and in a manner which reflects the resource conditions prevalent in their locations.

KIBS specialize in the creation, validation and application of specialized knowledge in order to solve client problems. They rely heavily on academic expertise blended with creativity, discretion and pragmatically justified rules of thumb, which reflect prior experiences and occupational norms (Faulconbridge, 2007; Robertson, Scarbrough, & Swan, 2003). This knowledge is often complex and tacit, embodied in the minds of individual experts, and is provided to clients through direct interaction. This translates into ‘inseparability’ of service development, production and provision. It also generates unique loyalty problems, because proprietary knowledge cannot easily be stored, transported and provided in a disembodied form, separate from the on-going practices of individual experts (Alvesson, 2000; Dougherty, 2004). Knowledge intensive service provision is therefore considered highly localized, expert-dependent and client-oriented, in all aspects of its structure and its strategy.

These characteristics mean that non-local market presence and collaborative linkages of KIBS cannot be understood merely in terms of well-calculated responses to evolving external political-institutional and technological circumstances, such as the inclusion of services in the GATT framework and the availability of modern ICTs (Javalgi, Griffith, & White, 2004; Samiee, 1999). More fundamentally, these issues must be understood within the context of search processes and experience-based learning at the level of the individual expert and establishment. This is because the internationalization process itself leads to learning and subsequent changes in organisational routines and aims; internationalisation increases awareness of further international opportunities, leads to the adaptation of organizational routines conducive to the task of operating abroad, and changes the way risk-reward ratios are evaluated (Johanson & Vahlne, 1977; Reihlen & Apel, 2007).

Prior research on knowledge-intensive services includes the work of Coviello and Munro (1997), which reveals the role of initial contact points in forming the basis for a broader set of informal and formal ties. While more recent contributions disagree on the relative importance of formal business ties versus informal social ties, they do agree that relationships in place prior to the internationalization process are of importance in shaping it. For instance, recent work has found that the internationalization of UK consultancy firms is favourably influenced by founder networks established through prior career paths (Deprey, 2011; Deprey, Lloyd-Reason, & Ibeh, 2011). Reihlen and Apel (2007) propose that internal cognitive diversity – the diversity of experiences among managers and other key employees – facilitates international opportunity identification and operations based on diverse knowledge inputs and market needs. This reflects the more general argument that proximity to a set of diverse, internationalized actors increases the likelihood that any individual firm conceives of operating in a foreign market (Fernhaber, et al., 2008).

The most important mechanisms for competence upgrading in KIBS is recruitment (Keeble & Nachum, 2002). This occurs most intensively through local labour markets. The extent to which experts available in local labour markets have prior experience with international operations and maintain interpersonal networks that extend into foreign business contexts is influenced by the degree of internationalization among actors and institutions from which this recruitment occurs. Similarly, when a diverse set of actors and institutions constitute the recruitment basis, this is
reflected not only in the diversity of experiences among new recruits, but also in the diversity of the external cognitive domains into which their informal network ties extend. Such networks are of vital importance to KIBS opportunity search (Robertson, et al., 2003; Todtling, Lehner, & Tripl, 2006).

Urban economies merit special attention. This is partly due to the diversity of industrial activities, research, education and public administration functions concentrated within them, and partly due to the tendency of these to be simultaneously linked to international industrial, academic and public policy networks and to local service providers (Aslesen & Isaksen, 2007; Aslesen & Jakobsen, 2007; Simmie, 2003). From the perspective of KIBS, location in an urban economy is conducive to securing a broad knowledge supply base and enables demand specialization. Concentrations of KIBS are characterized by high and cluster-specific rates of inter-firm mobility (Aslesen, Isaksen, & Stambøl, 2008; Herstad & Ebersberger, 2012) by which knowledge accumulation becomes linked to regional ‘occupational’ labour markets (Lam, 2000). Such labour markets provide conditions for the rapid entry and exit of new actors and for intense spillovers between individual firms (Agrawal, Cockburn, & McHale, 2006, Herstad, Sandven & Solberg, 2013). By contrast, firms in peripheral regions face narrower local knowledge supply bases and local markets with less scope for specialization (O’Farrell, Zheng, & Wood, 1996).

Firms in peripheral regions may compensate for these constraints by developing more innovative strategies and by attempting to ‘internalize’ some of the benefits which are external to firms in urban regions (Doloreux & Shearmur, 2012). This may even out, or even reverse, the productivity differences which would be expected from differences in location characteristics (ibid). However, exposure to information which is valuable because it originates from outside the firm cannot, by definition, be fully replaced by internalization. Thus, the external resource base of urban locations provides location-specific support for the process of identifying and acting on extra-regional market opportunities. This should be reflected in the geographical scope of market presence and client collaboration, leading to the following first two hypothesis regarding KIBS and their locations:

\[H1: \text{Urban location is positively associated with geographically dispersed sales}\]

\[H2: \text{Urban location is positively associated with geographically dispersed client collaboration}\]

Client interaction is part and parcel of service provision and the threshold at which it becomes co-production of knowledge is low. A substantial part of the literature has focused primarily on this dimension (Fosstenløkken, Løwendahl, & Revang, 2003; Skjølsvik, Løwendahl, Kvålshaugen, & Fosstenløkken, 2007). Yet, it is increasingly recognized that KIBS also engage in external knowledge sourcing beyond their client networks. Notably, the complementarities between demand and supply side linkages suggested by Castellacci (2010) are reflected in the notion of ‘innovation value chains’, wherein customers inspire new service development while knowledge from non-client actors enables it (Love, Roper, & Bryson, 2011). Such innovation collaboration beyond the client base entails the externalization of individual experts’ knowledge from the on-going practice of service provision (Dougherty, 2004). It therefore requires dedicated management attention and comes with distinct risks and opportunity costs. Furthermore, it requires mechanisms that ensure the appropriation of returns from the collaborative work at a later stage. However, management attention is a scarce resource (Ocasio, 1997) and the possibility to appropriate knowledge is often perceived as limited because the loyalty of individual experts cannot be taken for granted (von Nordenflycht, 2011). This increases the costs and the risks of collaboration. Hence, collaboration beyond the client base is
selective and sensitive to the information flows and resources provided by the urban economy. This gives rise to a third hypothesis on the scope of collaboration:

H3: Urban location is positively associated with geographically dispersed non-client innovation collaboration

The sensitivity of collaboration to geographical distance is moderated by the quality and relevance of partners once they are identified (Laursen, et al., 2011). Nonetheless, proximity enables more frequent face-to-face interaction and trust that is conducive to the exploration and exchange of not-yet-stable knowledge (Torre, 2008; Torre & Rallett, 2005). Consequently, the diversity of potential partner firms and institutions available around an urban region firm translate into a locational advantage, which should be reflected in broad local collaboration. From this follows the first hypothesis on the breadth of collaborative linkages maintained:

H4: Urban location is positively associated with broad local innovation collaboration

Compared to firms in other regions, urban region KIBS face less severe trade-offs between quality, relevance, and proximity of collaboration partners. In institutionally thinner regions (Tödtling & Tripl, 2005), KIBS have incentives to establish broader extra-regional collaboration networks (Doloreux & Shearmur, 2012; O'Farrell, et al., 1996) in order to overcome local resource constraints, leading to the second hypothesis on collaboration breadth:

H5: Non-urban location is positively associated with broad extra-regional domestic innovation collaboration

However, the weaker access to specialized human resources and privileged information that is associated with institutional thinness may limit the ability of the firm to implement those strategies through which it compensates for locational constraints. As international involvement is particularly sensitive to information and resource constraints, a final hypothesis follows:

H6: Non-urban location is negatively associated with broad international innovation collaboration

These six hypotheses reflect the two intersections which are fundamental to knowledge intensive business service firms: The intersection between client and non-client actor groups, and the intersection between local and global knowledge networks. The key underlying assumption is that the context or location of a firm influences its positioning. In the following section these six hypotheses are tested in a manner which seeks to isolate locational influences from those influences attributable to individual firm characteristics and strategies.
Empirical analysis

Locations
Previous empirical work using register data on housing and employment has identified 161 Norwegian labour market regions (Jukvam, 2002). These labour market regions are classified on a centrality scale ranging from 5 (capital region), through 4 (large city regions) to 1 (peripheral regions). Based on this, a comparison can be made between location in the capital region (‘Capital’) or the other three large city labour market regions (‘Trondheim’, ‘Bergen’, ‘Stavanger’) and those in a reference group consisting of labour market regions at centrality levels 1-3. This also allows us to distinguish urban economy influences from specific capital region influences. In order to capture whether these are specific to known services clusters within the capital region (e.g. Isaksen, 2008; Wood, 2006), the capital is split into three sub-regions. ‘Capital C’ captures locations within the capital city itself, and includes the main Norwegian financial centre. ‘Capital N’ captures locations in the bordering north-eastern municipalities. ‘Capital W’ captures locations in the bordering south-western municipalities, in which engineering and communication services are concentrated.

Data, sample selection issues and estimation strategy
The empirical analysis is based on micro-data from the sixth Norwegian Innovation Survey (CIS2008), collected by Statistics Norway in 2008 as an extended version of the harmonized European Community Innovation Survey (Eurostat, 2010; OECD, 2005). CIS data is collected by the national statistical agencies in all European countries on a biannual basis. The survey is based on the definitions of innovation input, behaviour and output laid out in the third edition of OECD’s Oslo Manual (OECD, 2005). Innovation survey data is used for generating official innovation statistics for the EU and its member states. It has been used extensively for analysis in economics (e.g. Cassiman & Veugelers, 2006; Cefis & Marsili, 2006), management studies (e.g. Grimpe & Kaiser, 2010; Laursen & Salter, 2006) and economic geography (e.g. Ebersberger & Herstad, 2012; Laursen, et al., 2011; Simmie, 2003).

In contrast to many other European countries, participation in CIS2008 was compulsory for the sampled Norwegian enterprises. This generated a comparatively large data set, which is not plagued by a non-response bias. The data has also been thoroughly reviewed and validated by Statistics Norway. Unique features of the Norwegian Innovation Survey include sampling for representativeness at the level of regions and the provision of basic information on all individual establishments within the surveyed enterprises. This information includes establishment size, sector and location. In total, the data set contains information on the innovation activities of 6,029 enterprises, with supplementary information on their 9,942 individual establishments within manufacturing industries, construction and infrastructure, wholesale trade and logistics, and knowledge-intensive business services. A total of 2,359 KIBS establishments are included in the data set. These are split into four sub-sectors: postal and communication services (NACE 64), technical services (NACE 72, 73), financial services (NACE 65-67) and other business services (NACE 74).

Only a sub-sample of observations is defined as innovation active and has provided information on these activities. As this might cause a selection bias (Heckman, 1979), regressions based on CIS are commonly estimated using a two-stage approach in which the second stage includes a control for unobserved determinants of selection estimated in the first stage (Crepon, Duguet, & Mairesse,
In analysis at the level of regions, an additional sample selection issue arises from the level of sampling. The surveyed legal entity (the ‘enterprise’) may in fact consist of several operational entities (i.e. ‘establishments’) which i) may operate in different sectors and ii) be located in different regions. Consequently, when enterprises include more than one establishment, estimations on specific industries may be biased by the fact that the sectors of interest (e.g. knowledge intensive services) are not properly identified by the sectoral affiliation of the enterprise. Similarly, in estimations comparing regions, biases may result from discrepancies between the regions in which activities are actually conducted (by establishments) and regions in which they are reported (by enterprises). In the approach used here (see Figure 1), both biases have to be accounted for.

The analysis uses individual establishment data to i) identify knowledge intensive business service providers through establishment-level sector codes and ii) estimate, by means of a selection equation, whether they are legally independent from other establishments and thus equal to the surveyed enterprise (Single = 1). This stage is estimated by a probit regression on all 2,359 KIBS establishments identified (see figure 1):

Selection step one:

\[
\text{Pr}(\text{Single}=1|\mathbf{x}) = \Phi(\mathbf{x}\beta)
\]

\(\mathbf{x}\) contains the variables capturing location (Trondheim, Stavanger, Bergen, and Capital), the size and the age of firms (measured in logarithmic scale) and their sub-sector affiliation. Based on this regression the Mills ratio is calculated and this is included in the subsequent regression steps to control for the selection bias.

By restricting this analysis to the 1,144 observations where the establishment equals the enterprise, it is possible to utilize the additional information available on the latter from CIS, to estimate the likelihood of innovation activity. This is necessary, because innovation collaboration can only be observed for those observations that are innovation active.

Selection Step two:

\[
\text{Pr}(\text{Active}=1|\mathbf{x}) = \Phi(\mathbf{x}\beta)
\]

In this step, \(\mathbf{x}\) includes characteristics assumed to affect the decision to carry out innovation activities, including location (Trondheim, Stavanger, Bergen, and Capital) and sectoral indicators. Furthermore, weak prior growth should positively influence the propensity to engage in current innovation activity. The log of the average annual percentage growth rate, from start-up (or 2001 at the earliest) until the start of the CIS reference period in 2006, is calculated based on business register data and is included. As affiliation with a foreign corporate group may either enable innovation activity or constrain it (Cantwell & Mudambi, 2005; Frenz & Letto-Gillies, 2007), a control
for this is included. By the same token, foreign market presence entails larger market size and exposure to more diverse information. Because this may influence the decision to engage in innovation activities (Crepon, et al., 1998), \(x \) includes a dummy variable capturing whether the main market is foreign. Based on this selection a second Mills ratio is computed, which will be included in the final outcome regression.

The correction of selection biases by means of the three step model employed here requires two instruments to produce credible estimates. In each stage, at least one variable has to determine selection without affecting any of the subsequent stages (Greene, 2000; Puhani, 2000). Establishment age is used as the instrument in the first step. Age should reduce the likelihood that the focal establishment is legally independent from other establishments, but should not affect the decision to engage in innovation activity or collaborate in various forms (e.g. Wong & He, 2009). In the second stage, the growth rate is included as an additional instrument. It should affect the decision to engage in innovation activities, but should not affect collaborative involvement.

The results of the selection equations are reported in Table A1 in the appendix. Age and size, measured as their respective natural logarithms, significantly reduce the likelihood that the establishment fully equals the enterprise surveyed by CIS. The strong, positive impact of capital region location is notable because no significant impacts are detected from location in any of the other urban labour market regions. Location in the capital region significantly reduces the likelihood of innovation activity, while location in the second largest town of Bergen significantly increases it. This is consistent with the notion that knowledge spillovers between KIBS in the capital region are reducing their individual incentive to engage in systematic development work due to appropriability problems and the option of ‘learning-by-hiring’ provided by the strong regional labour markets for expertise (e.g. Herstad, et al., 2011, Herstad & Ebersberger, 2012).

Outcome regressions

Scope and breadth of collaborative involvement

The innovation survey specifies four geographical levels at which the firm can have a market presence (locally and non-locally in Norway, in EU or EFTA countries, and elsewhere). Furthermore, it specifies a total of eight potential collaboration partner groups, which range from downstream customers through suppliers and competitors, into research institutes and universities upstream. For each partner group, the firm indicates whether a collaborative interaction has taken place in its own region (subjectively defined by the firm itself), elsewhere in Norway or in either one of five world regions specified (Nordic countries, EU excl. Nordic countries, North America, Asia, other).

Based on this, a set of indicators can be constructed which capture the geographical scope of involvement in sales, client collaboration and non-client collaboration. An additional set of indicators captures the breadth of collaborative involvement locally, domestically outside own region, and abroad. To estimate the scope of involvement the information available on the geographical location of the given types of collaboration partners (clients or non-client actor groups specified in the questionnaire) was used. The breadth of involvement was calculated using the information available on the different types of collaboration partners at the three main spatial levels specified. The raw
involvement indexes developed in this study are constructed in accordance with the work of Bozeman, Gaughan and Corley (Bozeman & Gaughan, 2011; Gaugan & Corley, 2010) as weighted additive indices. The weights are the inverse of the relative frequency of the activity in the NACE 2-digit sector. All involvement indexes are log transformed prior to estimations.

Estimation

It cannot be assumed that the decision to engage along one dimension is independent of activities along other dimensions. Two sets of seemingly unrelated regressions with three dependent variables each are therefore estimated (Zellner, 1962):

\[
\begin{align*}
\nu_1 &= x^3 \beta_1 + u_{1j} \\
\nu_2 &= x^2 \beta_2 + u_{2j} \\
\nu_3 &= x^1 \beta_3 + u_{3j}
\end{align*}
\]

where \(u = (u_1', u_2', u_3')' \) and \(E(u) = 0, E(uu') = \Sigma \).

The first set of regressions estimates involvement in geographically dispersed sales (\(\nu_1 \)) client collaboration (\(\nu_2 \)) and non-client collaboration (\(\nu_3 \)), whereas the second set of regressions estimates the breadth of involvement in regional collaboration (\(\nu_1 \)), domestic collaboration (\(\nu_2 \)) and international collaboration (\(\nu_3 \)). The Breusch-Pagan Chi2 Lagrange multiplier test (Breusch & Pagan, 1980) is implemented to capture interdependencies between the outcome variables revealed by the correlation of their error terms (Arora, 1996). All outcome regressions are reported in a base form, which includes only locations, selection controls and instruments; and in a full form which includes all exogenous variables.

Control variables

CIS data allows a number of control variables to be implemented in order to isolate the impact of firm-specific characteristics from the impact of the location itself. First, increasing firm size typically entails more diverse competences, stronger management capabilities and better developed organizational systems (e.g. Gilbert, McDougall, & Audretsch, 2006). On the other hand, firms of a smaller may exhibit increased organizational flexibility and dependence on resources in their external environments (Fernhaber, et al., 2008). Consequently, size may either increase the propensity of the firm to collaborate, due to management learning and organizational absorptive capacity effects, or may reduce this propensity due to less flexibility and the lower dependence on external resources which follow from stronger internal capabilities. As this suggests a certain non-linearity, enterprise size is controlled for by comparing small establishments (\(< 26 \) employees) and large establishments (\(>99 \) employees) to a reference group consisting of medium sized establishments.

Innovation expenditures (R&D and non-R&D) measured in NOK 100 000 per employee are used to capture the firm’s emphasis on systematic new knowledge development (Ebersberger, Herstad, Iversen, Som, & Kirner, 2011; Tether, 2002). A strong emphasis on innovation strengthens internal knowledge resources and routines and in this way can increase the capacity to engage in collaborative work (Cohen & Levinthal, 1989, 1990), in particular over long distances (de Jong & Freel, 2009). A control for innovation intensity is included, in order to capture these effects. The
networks of foreign enterprise groups may serve as a channel for international sales and collaboration partner search, in a manner not attributable to the location of the individual firm (Asheim, Ebersberger, & Herstad, 2012; Kafouros, Buckley, & Clegg, 2012). However, such affiliation also requires attention, potentially at the expense of attention towards collaborative knowledge development (Blanc & Sierra, 1999; Ebersberger & Herstad, 2012). A control is therefore included which captures foreign group affiliation. Public innovation funding schemes often aim to achieve behavioural additionally (Czarnitzki, Ebersberger, & Fier, 2007). This effect is controlled for by a dummy variable on the receipt of domestic or EU funding. Lastly, because collaborative work involves exposure of proprietary knowledge, willingness to engage is likely to be contingent on the availability of relevant IPR protection measures. The control for IPR breadth (Herstad, et al., 2008) captures the fraction of specified IPR protection mechanisms (patents, industrial designs, trademarks, copyright, secrecy, complexity of goods and services and lead time advantages) which the establishment reports using.

In the last set of regressions, each equation includes a control for the market presence, which corresponds to the level of involvement captured by the dependent variable. This procedure is applied to specifically capture the strength of the linkage between KIBS market presence at a certain geographical level, and their involvement at the same level. Bivariate correlations and descriptive statistics for all variables are reported in Table A2 in the appendix.
Results

Table 1 below shows the results of the regressions on the geographical scope of involvement in sales, client collaboration and non-client collaboration. The base model detects a more dispersed market presence among KIBS located in the fourth largest labour market region of Stavanger, compared to the more peripheral reference regions (centrality 1-3). This effect loses significance when the control variables are included. By contrast, the full model finds that KIBS in the second and third largest labour market regions (Bergen and Trondheim) are less involved in geographically dispersed sales than KIBS located outside the large city regions. Thus, peripherality rather than urban location is associated with broader market presence.

Table 1 approximately here

Neither an urban location in general, nor a capital region location in particular, increases the scope of demand side involvement. The fact that neither hypothesis H1 nor hypothesis H2 is supported suggests that the outward push to reach extra-regional markets experienced by KIBS in peripheral regions is as strong as the enabling effect of resources specific to urban regions. In contrast, the base and full models estimating involvement in geographically dispersed non-client collaboration yield highly significant coefficients for all three capital region sub-clusters (Capital C, Capital N, and Capital W). The negative impacts of location in the other large city regions on both non-client and client side involvement are not significant, either individually or jointly. Thus, the support for Hypothesis H3 is specific to the capital region.

The Breusch-Pagan test reveals that independence of the three forms of involvement can be rejected (Chi2=237, 18; p=0.000). Notable control variable impacts include positive and highly significant parameter estimates for innovation intensity in all three equations. Furthermore, foreign group affiliation increases involvement in geographically dispersed sales, but has negative, although insignificant, effects on involvement in collaboration. As expected, public funding is positively associated with collaborative involvement. Supplementary Wald tests reveal that the impact of public funding on non-client involvement is not significantly stronger than any individual capital region variable impact. At the outset, this means that merely ‘being there’ in the capital has an impact on collaboration, which is approximately equal to the behavioural additionality of public funding. Lastly, neither small nor large KIBS are more involved than medium-sized KIBS establishments (the reference group); nor are the coefficients for small and large size, according to Walds tests, significantly different from each other.

The regressions on the breadth of involvement at different geographical levels are reported in Table 2. In the full model, it is only capital region location which is associated with stronger involvement locally and abroad. Notably, this holds even after controlling for whether or not the firm is present in local and international markets respectively. It is only the breadth of foreign involvement which is influenced significantly by market presence at the same spatial level. Thus, the conditional (on capital region location) support for Hypothesis H4 suggests that while KIBS in this region actively draw on a broad range of local collaboration partners, KIBS in other urban labour market regions do not do so to the same extent. Similarly, the conditional (on capital region location) support for Hypothesis H6 is consistent with the findings on the scope of non-client linkages: Capital region KIBS actively use the
local resource base while searching for and collaborating with international partners. In fact, supplementary Wald’s tests reveal that breadth of foreign involvement is significantly more strongly influenced by merely ‘being there’ in the central or western services clusters of the capital, than it is influenced by foreign market presence (Chi2=3.52 and 4.56, p=0.065 and 0.032 respectively).

The full model that estimates the breadth of non-local domestic collaboration yields significantly negative coefficient estimates for all urban locations, except for the capital. This provides support for Hypothesis H5, which predicts broader non-local domestic involvement outside urban regions due to local resource constraints. The fact that it takes the form of significant differences between peripheral regions and non-capital urban regions only points to the dominant position of the capital region economy in the national innovation system as a whole. It also raises the question of whether domestic collaboration networks of KIBS in peripheral regions by and large converge on the capital.

The Breusch-Pagan test again finds that independence can be rejected (Chi2=328,543; p=0,000). Furthermore, the analysis finds small KIBS to be more involved abroad than medium-sized KIBS and a negative coefficient for large KIBS. While the latter is not significant, this does suggests that internationalization is influenced by receptiveness to external opportunities. This receptiveness exerts a stronger influence than the managerial capabilities and broader internal competences which typically are associated with size.

Conclusion

This paper has investigated whether the resources available to KIBS in urban locations influence the scope and breadth of their collaborative involvement. In doing so, it has also analysed the role played by services in linking localized collaboration networks to global knowledge flows, and in contributing to knowledge diffusion across institutional and sectoral divides. The provision of advanced business services is fundamentally a process of knowledge coproduction with clients. Consequently, the geographical scope of client collaboration is closely linked to the geographical scope of market presence, and to the overall emphasis put on innovation by the individual firm. Resources available to KIBS in urban regions may make it easier for them to identify and pursue extra-regional market opportunities, as suggested in the theoretical discussion, but these effects are overshadowed by the stronger external market dependence of KIBS outside these regions.

Partnerships which extend beyond the realm of clients are also closely associated with firm-specific investments in innovation. However, compared to demand side relationships, they are much more selective and subjected to stronger partner search, opportunity cost and human resource constraints. These constraints are mediated by competences and contact points to informal networks provided by individual experts, or those accessed through pre-existing collaborative ties (Johanson and Vahlne, 2009). The result is significantly stronger non-client involvement amongst KIBS in those capital region locations which offer the greatest direct access to human resources and the most diverse local partner base.
In other words, the commitment of capital region KIBS to local collaboration reflects the place-specific availability of resources which also support broader, and more far-reaching, international involvement. This underscores how network linkages internal and external to locations may be complementary to each other (Bathelt, Malmberg & Maskell, 2004) rather than contradictory (e.g. Fitjar & Rodríguez-Pose, 2012) in their impact on territorial industrial dynamics: Strong international involvement amongst individual firms and public sector institutions translates into broad local economy contact points to non-local networks, and the build-up of experience with international operations amongst potential partner firms and professionals mobile in occupational labour markets. This allows technology and market opportunities external to the region to be identified and pursued by firms which, at the outset, primarily focus on search and client collaboration within it. The diverse and internationalized industrial base of the capital region thus enables service providers to continuously emerge, reflect on and redefine their own positioning at the intersection between knowledge supply and knowledge demand, the global and the local (Wood, 2006). As they do so, they collectively expand the local resource base available to other firms to support their establishment of broad and far-reaching network linkages.

The self-reinforcing advantageous position of the capital as a breeding ground for internationalized services raises questions concerning the need for policy intervention. In non-urban Norwegian labour market regions, it is apparent that weak local resource bases translate into a strong dependence on domestic collaboration networks which, to unknown degrees, converge on the capital. To the extent that governmental initiatives should target KIBS in these regions, they should focus on supporting the build-up of internal competences and on strengthening their international linkages (Herstad, Bloch, Ebersberger & van De Velde, 2010). Both these aspects of KIBS activity are constrained by occupational labour markets which reflect comparatively weak industrial bases and brain drain towards the capital (Aslesen et. al., 2008). Nonetheless, the inherent dependence of KIBS on surrounding local conditions suggests that the potential for growth in peripheral regions is limited, and is more dependent on effective regional innovation policies as a whole than on initiatives aimed specifically at services.

A need for targeted intervention is more evident in the non-capital urban regions, where colocation with advanced industrial organizations and knowledge institutions does not trigger significantly broader local commitment than that found in peripheral regions. This merits attention in the form of local mobilization and networking initiatives (Tödtling & Trippl, 2005), because the KIBS sector appears unable to exploit the diverse knowledge assets and capabilities which are present. Even more importantly, it entails that the sector does not to live up to its potential for actively contributing to cross-fertilization between them.

Certain important limitations to the study must be acknowledged. First, cross-sectional data cannot be used to determine whether innovation policies and associated funding schemes actively influence the positioning of KIBS within the nexuses of global-local and demand-supply, or merely follow up with funding once such positions are already established. A second limitation is that the data does not allow analyses of the purpose and content of various collaborative linkages, nor how they evolve over time. This means that the analyses cannot describe the nature of demand side linkages maintained at various spatial scales, nor capture the relationship between demand and supply side involvement. It also cannot describe what is likely to be a distinct division of labour between local linkages, motivated by the resources available in the capital, and international collaboration, motivated
by a need to access resources which are not. This underscores how further quantitative and qualitative analyses is needed to capture the evolutionary dynamics of new service firm formation and network positioning, and how innovation policies may directly or indirectly influence these dynamics under different regional conditions.

Third, the empirical analysis has assumed that the use of public funding schemes, the overall emphasis put by KIBS on innovation and their implementation of IPR protection strategies are micro-level characteristics determined independently of locations. This assumption is not trivial. Access to public innovation schemes may, due to the incorporation of regional development objectives, be contingent on the location of the firm. Furthermore, innovation intensity and IPR strategies may, like the decision to engage in innovation activity, be influenced by regional economy characteristics and by the local appropriability regimes these characteristics give rise to (Herstad & Ebersberger, 2012, Herstad et. al., 2011).

The Norwegian capital region is, by international standards, small and peripheral. Despite this, it does exhibit the concentration of knowledge workers, private sector R&D and business services which is typical of such regions. Limitations attributable to the use of data from a single, small, open economy should therefore not overshadow the fact that the analysis provided herein has, as the first of its kind, pin-pointed the types of collaborative linkages that are sensitive to influences from high-density urban locations. This is an important contribution in its own right, which also allows for an improved understanding of how the concentration of services in such locations both expresses and expands their role as ‘melting pots’ for information and knowledge originating in various institutional and geographical domains. It follows that the growth of internationally oriented services may not so much be a general urban economy phenomenon, as a phenomenon which is, and likely will remain, contained within the very limited number of locations positioned for such growth at the outset.

Acknowledgements
Research for this article was funded by the Research Council of Norway under the project ‘Economic Development Paths in Norwegian Regions’, and inspired by work previously conducted by the authors under the Councils ‘Programme for Regional R&D and Innovation’ (VRI). The financial support received, and the valuable input provided by two anonymous reviewers and the Editors, is gratefully acknowledged. Yet, the usual disclaimers apply.
References

Herstad, S., Aslesen, H. W., & Ebersberger, B. (Forthc.). On industrial knowledge bases, commercial opportunities and global innovation network linkages. Accepted for publication, *Research Policy*.

Appendix

Tables A1 and A2 here
Figures

Stage 1
Probit regression

All establishments
N=2,350

Independence

Not independent
Single = 0
N=1,215

Independent
Single = 1
N=1,144

Stage 2
Probit regression

Innovation activity

No innovation activities
Active = 0
N=473

Innovation activities
Active = 1
N=671

Stage 3
Seemingly unrelated regressions

Involvement by dimension

Scope of market presence
Scope of client collaboration
Scope of non-client collaboration

Involvement by geography

Breadth of local involvement
Breadth of domestic involvement
Breadth of international involvement
Table 1: Involvement by dimension

<table>
<thead>
<tr>
<th>Labour market regions</th>
<th>Equation A: Scope of market presence (lnSales)</th>
<th>Equation B: Scope of client collaboration (lnCust)</th>
<th>Equation C: Scope of non-client collaboration (lnSupp)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base model</td>
<td>Full model</td>
<td>Base model</td>
</tr>
<tr>
<td></td>
<td>Coeff.</td>
<td>SE</td>
<td>Coeff.</td>
</tr>
<tr>
<td>Labour market regions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrality 1-3</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Trondheim</td>
<td>-0.023</td>
<td>0.044</td>
<td>-0.080</td>
</tr>
<tr>
<td>Stavanger</td>
<td>0.089</td>
<td>0.041**</td>
<td>0.045</td>
</tr>
<tr>
<td>Bergen</td>
<td>-0.031</td>
<td>0.040</td>
<td>-0.117</td>
</tr>
<tr>
<td>Capital N</td>
<td>-0.049</td>
<td>0.061</td>
<td>-0.078</td>
</tr>
<tr>
<td>Capital W</td>
<td>0.038</td>
<td>0.041</td>
<td>0.010</td>
</tr>
<tr>
<td>Capital C</td>
<td>-0.005</td>
<td>0.029</td>
<td>-0.036</td>
</tr>
<tr>
<td>Firm characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium (26-99 employees)</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Small (<26 employees)</td>
<td>0.004</td>
<td>0.034</td>
<td>0.000</td>
</tr>
<tr>
<td>Large (>99 employees)</td>
<td>-0.001</td>
<td>0.068</td>
<td>-0.094</td>
</tr>
<tr>
<td>Part of foreign corporate group</td>
<td>0.109</td>
<td>0.039***</td>
<td>0.015</td>
</tr>
<tr>
<td>Firm strategy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovation intensity</td>
<td>0.019</td>
<td>0.048***</td>
<td>0.015</td>
</tr>
<tr>
<td>IPR breadth</td>
<td>0.108</td>
<td>0.049**</td>
<td>0.211</td>
</tr>
<tr>
<td>Public funding</td>
<td>0.014</td>
<td>0.035</td>
<td>0.126</td>
</tr>
<tr>
<td>Selection instruments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (log)</td>
<td>-0.008</td>
<td>0.013</td>
<td>0.000</td>
</tr>
<tr>
<td>Growth (log)</td>
<td>0.000</td>
<td>0.026</td>
<td>0.030</td>
</tr>
<tr>
<td>Pseudo R2</td>
<td>0.0355</td>
<td>0.1491</td>
<td>0.0202</td>
</tr>
<tr>
<td>Chi2</td>
<td>27.73</td>
<td>117.61</td>
<td>13.84</td>
</tr>
<tr>
<td>Probc>Chi2</td>
<td>0.006</td>
<td>0.000</td>
<td>0.180</td>
</tr>
</tbody>
</table>

Note: Coefficient estimates and standard errors from seemingly unrelated regressions. Breusch-Pagan test of independence: Chi2 (3) = 308.888, prob>Chi2 = 0.000. ***, ** and * indicate significance at 1, 5 and 10 per cent levels respectively. Inverse Mills ratios calculated on the basis for model 1 and 2 are included in all regressions. The full regression models include three subsector controls, which are jointly significant.
Table 2: Involvement by geography

<table>
<thead>
<tr>
<th></th>
<th>Equation A: Breadth of local involvement (lnReg)</th>
<th>Equation B: Breadth of domestic (nonlocal) involvement (lnDom)</th>
<th>Equation C: Breadth of foreign involvement (lnFor)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base model</td>
<td>Full model</td>
<td>Base model</td>
</tr>
<tr>
<td>Labour market regions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrality 1-3</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>Coeff.</td>
<td>SE</td>
<td>Coeff.</td>
</tr>
<tr>
<td>Trondheim</td>
<td>0.120</td>
<td>0.059**</td>
<td>0.038</td>
</tr>
<tr>
<td>Stavanger</td>
<td>-0.048</td>
<td>0.056</td>
<td>-0.074</td>
</tr>
<tr>
<td>Bergen</td>
<td>-0.051</td>
<td>0.053</td>
<td>-0.069</td>
</tr>
<tr>
<td>Capital N</td>
<td>-0.006</td>
<td>0.082</td>
<td>0.152</td>
</tr>
<tr>
<td>Capital W</td>
<td>0.139</td>
<td>0.054**</td>
<td>0.194</td>
</tr>
<tr>
<td>Capital C</td>
<td>0.037</td>
<td>0.038</td>
<td>0.121</td>
</tr>
<tr>
<td>Firm characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium (26-99 employees)</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>Coeff.</td>
<td>SE</td>
<td>Coeff.</td>
</tr>
<tr>
<td>Small (<26 employees)</td>
<td>-0.019</td>
<td>0.045</td>
<td>0.004</td>
</tr>
<tr>
<td>Large (>99 employees)</td>
<td>-0.093</td>
<td>0.091</td>
<td>0.017</td>
</tr>
<tr>
<td>Foreign corporate group</td>
<td>-0.059</td>
<td>0.053</td>
<td>-0.019</td>
</tr>
<tr>
<td>Firm strategy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovation intensity</td>
<td>0.014</td>
<td>0.064**</td>
<td>0.014</td>
</tr>
<tr>
<td>IPR breadth</td>
<td>0.179</td>
<td>0.066***</td>
<td>0.242</td>
</tr>
<tr>
<td>Public funding</td>
<td>0.240</td>
<td>0.046***</td>
<td>0.167</td>
</tr>
<tr>
<td>Market presence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>0.034</td>
<td>0.029</td>
<td>0.037</td>
</tr>
<tr>
<td>Domestic</td>
<td></td>
<td></td>
<td>0.037</td>
</tr>
<tr>
<td>Foreign</td>
<td></td>
<td></td>
<td>0.040</td>
</tr>
<tr>
<td>Selection instruments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (log)</td>
<td>-0.009</td>
<td>0.018</td>
<td>-0.018</td>
</tr>
<tr>
<td>Growth (log)</td>
<td>0.021</td>
<td>0.035</td>
<td>0.026</td>
</tr>
<tr>
<td>Pseudo R2</td>
<td>0.025</td>
<td>0.151</td>
<td>0.026</td>
</tr>
<tr>
<td>Chi2</td>
<td>17.52</td>
<td>118.78</td>
<td>17.88</td>
</tr>
<tr>
<td>Prob>Chi2</td>
<td>0.063</td>
<td>0.000</td>
<td>0.057</td>
</tr>
</tbody>
</table>

Note: N=671. Coefficient estimates and standard errors from seemingly unrelated regressions. Breusch–Pagan test of independence: Chi2 (3) =328,543, prob>Chi2=0.000. ***, ** and * indicate significance at 1, 5 and 10 per cent levels respectively. Inverse Mills ratios calculated on the basis for model 1 and 2 are included in all regressions. The full regression models include three subsector controls, which are jointly significant.
Table A1: Selection models

<table>
<thead>
<tr>
<th></th>
<th>Model 1: Single=1</th>
<th>Model 2: Active=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marg eff</td>
<td>SE</td>
</tr>
<tr>
<td>Centrality 1-4</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Trondheim</td>
<td>-0.006</td>
<td>0.041</td>
</tr>
<tr>
<td>Stavanger</td>
<td>-0.003</td>
<td>0.036</td>
</tr>
<tr>
<td>Bergen</td>
<td>-0.013</td>
<td>0.040</td>
</tr>
<tr>
<td>Capital</td>
<td>0.250</td>
<td>0.022***</td>
</tr>
<tr>
<td>Part of foreign corporate group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign market orientation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (log)</td>
<td>-0.117</td>
<td>0.009***</td>
</tr>
<tr>
<td>Age (log)</td>
<td>-0.029</td>
<td>0.012**</td>
</tr>
<tr>
<td>Growth (log)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>2359</td>
</tr>
<tr>
<td></td>
<td>Wald Chi2(9)</td>
<td>375.24</td>
</tr>
<tr>
<td></td>
<td>Prob>Chi2</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Pseudo R2</td>
<td>0.179</td>
</tr>
</tbody>
</table>

Note: Marginal effects and robust standard errors from probit regression model. ***, ** and * indicate significance at 1, 5 and 10 per cent levels respectively. Both models include three subsector controls, which are jointly significant. Model 2 include the inverse Mills ratio calculated on the basis of Model 1.
Table A2: Descriptive statistics and correlations

	Mean	SD	Max	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27		
1	0.55	0.27	1.30	1																												
2	0.09	0.28	1.91	0.19																												
3	0.15	0.34	1.71	0.17	0.63																											
4	0.13	0.35	2.03	0.10	0.62	0.69																										
5	0.10	0.32	2.02	0.15	0.59	0.63	0.45																									
6	0.10	0.32	1.90	0.19	0.69	0.83	0.46	0.53																								
7	0.06	0.24	1	0.02	0.07	0.06	0.08	0.04	0.05																							
8	0.08	0.27	1	0.13	0.01	0.01	0.04	0.01	0.02																							
9	0.09	0.29	1	0.01	0.07	0.07	0.04	0.03	0.08																							
10	0.03	0.18	1	0.06	0.03	0.06	0.04	0.03	0.04	0.05	0.05																					
11	0.10	0.29	1	0.03	0.02	0.06	0.08	0.00	0.05	0.08	0.09	0.10	0.06	0.10	0.10	0.10																
12	0.34	0.47	1	0.05	0.00	0.02	0.02	0.09	0.19	0.21	0.23	0.13	0.23	1																		
13	0.06	0.24	1	0.01	0.08	0.05	0.06	0.07	0.04	0.05	0.03	0.06	0.02	0.04	0.04																	
14	0.09	0.28	1	0.07	0.05	0.05	0.05	0.09	0.09	0.04	0.08	0.05	0.12	0.06	0.10	0.08																
15	0.01	0.18	1	0.03	0.02	0.06	0.08	0.00	0.05	0.08	0.09	0.10	0.06	0.10	0.10	0.10	0.10															
16	0.41	0.49	1	0.03	0.00	0.04	0.04	0.04	0.00	0.02	0.07	0.08	0.00	0.12	0.21	0.26																
17	0.61	0.41	3.18	0.01	0.02	0.03	0.01	0.04	0.06	0.06	0.02	0.04	0.00	0.01																		

Note: Bivariate correlations and descriptive statistics, innovation active establishments (N=671). The minimum value of all variables is zero. Innovation intensity is reported in NOK 1000.

Herstad & Ebersberger, May 2013.
As an example of how involvement indexes are constructed, consider a firm engaged in client collaboration only in the Nordic countries and in Asia. In the NACE 2-digit sector of this firm, collaboration with customers within the Nordic countries is rather common as 80% of the firms maintain such. Collaboration with customers in the EU is maintained by 65%, in North America by 60%, in Asia by 25% and elsewhere by 30%. Before logarithmic transformation, the scope of client involvement would be:

\[
(1\times(1-0.80)) + (0\times(1-0.65)) + (0\times(1-0.60)) + (1\times(1-0.25)) + (0\times(1-0.30)) = 0.95
\]

Similarly, consider a firm in a sector where 50% collaborate with clients locally; 15% do so with suppliers locally and 7% with research institutes locally. The average for local collaboration with universities, competitors, consultancy firms and private R&D labs is 1% in all cases. If this single firm maintains local client collaboration, supplier collaboration and university collaboration, the breadth of local involvement would be 2.34 before log transformation. If the same firm also collaborates with a local research institute, the involvement score would increase by \(1\times(1-0.07)\), i.e. by 0.93.
CIRCLE ELECTRONIC WORKING PAPERS SERIES (EWP)

CIRCLE (Centre for Innovation, Research and Competence in the Learning Economy) is a multidisciplinary research centre set off by several faculties at Lund University and Blekinge Institute of Technology. CIRCLE has a mandate to conduct multidisciplinary research and education on the following issues: Long-term perspectives on innovation, structural change and economic growth, Entrepreneurship and venture capital formation with a special focus on new ventures, The dynamics of R&D systems and technological systems, including their impact on entrepreneurship and growth, Regional innovation systems in different national and international contexts and International comparative analyses of national innovation systems. Special emphasis is done on innovation policies and research policies. 10 nationalities and 14 disciplines are represented among the CIRCLE staff.

The CIRCLE Electronic Working Paper Series are intended to be an instrument for early dissemination of the research undertaken by CIRCLE researchers, associates and visiting scholars and stimulate discussion and critical comment.

The working papers present research results that in whole or in part are suitable for submission to a refereed journal or to the editor of a book or have already been submitted and/or accepted for publication.

CIRCLE EWPs are available on-line at: http://http://www.circle.lu.se/?page_id=176

Available papers:

2013

WP 2013/01
Start-up rates, Entrepreneurship Culture and the Business Cycle Swedish patterns from national and regional data
Martin Andersson

WP 2013/02
Market Thickness and the Early Labor Market Career of University Graduates - An urban advantage?
Lina Ahlin, Martin Andersson and Per Thulin

WP 2013/03
Implementing an R&D Strategy without Prior R&D-Experience - Recruitment as a Source of R&D-related Routines and Capabilities?
Lina Ahlin, Martin Andersson and Thorben Schubert

WP 2013/04
The Choice of Innovation Policy Instruments
Susana Borrás, Charles Edquist

WP 2013/05
What Does Evolutionary Economic Geography Bring To The Policy Table? Reconceptualising regional innovation systems
Bjørn Asheim, Markus M. Bugge, Lars Coenen, Sverre Herstad

WP 2013/06
Commercializing clean technology innovations – the emergence of new business in an agency-structure perspective
Sofia Ardevichkova, Lars Coenen

WP 2013/07
Renewal of mature industry in an old industrial region: regional innovation policy and the co-evolution of institutions and technology
Lars Coenen, Jerker Moodysson and Hanna Martin

WP 2013/08
Systematic anchoring of global innovation processes and new industry formation – the emergence of on-site water recycling in China
Christian Binz, Bernhard Truffer and Lars Coenen

WP 2013/09
The internationalisation of R&D: sectoral and geographic patterns of cross-border investments
Cristina Castelli and Davide Castellani

WP 2013/10
Clean-tech innovation in Emerging Economies: Transnational dimensions in technological innovation system formation
Jorrit Gosens, Yonglong Lu and Lars Coenen

WP 2013/11
Why space matters in technological innovation systems – the global knowledge dynamics of membrane bioreactor technology
Christian Binz, Bernhard Truffer and Lars Coenen

WP 2013/12
MNC affiliation, knowledge bases and involvement in global innovation networks
Sverre J. Herstad, Bernd Ebersberger, Bjørn Asheim

WP 2013/13
System Failures, Knowledge Bases and Regional Innovation Policies
Roman Martin and Michaela Trippl

WP 2013/14
Differentiated Knowledge Bases and the Nature of Innovation Networks
Roman Martin

WP 2013/15
The Geography and Structure of Global Innovation Networks: A Knowledge Base Perspective
Ju Liu, Cristina Chaminade, Bjørn Asheim

WP 2013/16
The spatiality of trust – Antecedents of trust and the role of face-to-face contacts
WP 2013/17
Technology-Driven FDI: A Survey of the Literature
Alessia Amighini; Claudio Cozza; Elisa Giuliani; Roberta Rabelotti; Vittoria Scalera

WP 2013/18
Substitution or overlap? The relations between geographical and non-spatial proximity dimensions in collaborative innovation projects
Tess Hansen

WP 2013/19
Entrepreneurship and the Business Cycle: Do New Technology-Based Firms Differ?
Olof Ejermo and Jing Xiao

WP 2013/20
R&D offshoring and the productivity growth of European regions
Davide Castellani and Fabio Pieri

WP 2013/21
On the link between urban location and the involvement of knowledge intensive business services firms in collaboration networks
Sverre J. Herstad and Bernd Ebersberger

2012

WP 2012/01
Is the University Model an Organizational Necessity? Scale and Agglomeration Effects in Science
Tasso Brandt and Torben Schubert

WP 2012/02
Do regions make a difference? Exploring the role of different regional innovation systems in global innovation networks in the ICT industry
Cristina Chaminade and Monica Plechero

WP 2012/03
Measuring the knowledge base of regional innovation systems in Sweden
Roman Martin

WP 2012/04
Characteristics and Performance of New Firms and Spinoffs in Sweden
Martin Andersson and Steven Klepper

WP 2012/05
Demographic patterns and trends in patenting: Gender, age, and education of inventors
Olof Ejermo and Taehyun Jung

WP 2012/06
Competences as drivers and enablers of globalization of innovation: Swedish ICT industry and emerging economies
Cristina Chaminade and Claudia de Fuentes

WP 2012/07
The Dynamics and Evolution of Local Industries – The case of Linköping
Sabrina Fredin

WP 2012/08
Towards a Richer Specification of the Exploration/Exploitation Trade-off: Hidden Knowledge-based Aspects and Empirical Results for a Set of Large R&D-Performing Firms
Torben Schubert and Peter Neuhaeusler

WP 2012/09
The European Spallation Source (ESS) and the geography of innovation
Josephine V. Rekers

WP 2012/10
How Local are Spatial Density Externalities? - evidence from square grid data
Martin Andersson, Johan Klaesson, Johan P Larsson

WP 2012/11
Why Pre-Commercial Procurement is not Innovation Procurement
Charles Edquist, Jon Mikel Zabala-Iturriagagoitia

2011

WP 2011/01
SMEs' absorptive capacities and large firms' knowledge spillovers: Micro evidence from Mexico
Claudia de Fuentes and Gabriela Dutrénit

WP 2011/02
Comparing knowledge bases: on the organisation and geography of knowledge flows in the regional innovation system of Scania, southern Sweden
Roman Martin and Jerker Moodysson

WP 2011/03
Organizational paths of commercializing patented inventions: The effects of transaction costs, firm capabilities, and collaborative ties
Taehyun Jung and John P. Walsh

WP 2011/04
Global Innovation Networks: towards a taxonomy
Helena Barnard and Cristina Chaminade

WP 2011/05
Swedish Business R&D and its Export Dependence
Karin Bergman and Olof Ejermo

WP 2011/06
Innovation Policy Design: Identification of Systemic Problems
Charles Edquist

WP 2011/07
Regional Institutional Environment and its Impact on Intra-firm and Inter-organisational Innovation Networks: A Comparative Case Study in China and Switzerland
Ju Liu

WP 2011/08
Entrepreneurship: Exploring the Knowledge Base
Hans Landström, Gouya Harirchi and Fredrik Astrom

WP 2011/09
Policy coordination in systems of innovation: A structural-functional analysis of regional industry support in Sweden
Magnus Nilsson and Jerker Moodysson

WP 2011/10
Urban Design in Neighbourhood Commodification
Ana Matilda Madureira

WP 2011/11
Technological Dynamics and Social Capability: Comparing U.S. States and European Nations
Jan Fagerberg, Maryan Feldman and Martin Srhoieic

WP 2011/12
Linking scientific and practical knowledge in innovation systems
Arne Isaksen and Magnus Nilsson

WP 2011/13
Institutional conditions and innovation systems: on the impact of regional policy on firms in different sectors
Jerker Moodysson and Elena Zukauskaite

WP 2011/14
Considering adoption: Towards a consumption-oriented approach to innovation
Josephine V. Rekers

WP 2011/15
Exploring the role of regional innovation systems and institutions in global innovation networks
Cristina Chaminade

2010

WP 2010/01
Innovation policies for development: towards a systemic experimentation based approach
Cristina Chaminade, Bengt-Ake Lundvall, Jan Vaag Lauridsen and KJ Joseph

WP 2010/02
From Basic Research to Innovation: Entrepreneurial Intermediaries for Research Commercialization at Swedish ‘Strong Research Environments’
Fumi Kitagawa and Caroline Wigrén

WP 2010/03
Different competences, different modes in the globalization of innovation? A comparative study of the Pune and Beijing regions
Monica Plechero and Cristina Chaminade

WP 2010/04
Technological Capability Building in Informal Firms in the Agricultural Subsistence Sector in Tanzania: Assessing the Role of Gatsby Clubs
Astrid Szogos and Kelefa Mwantima

WP 2010/05
The Swedish Paradox – Unexploited Opportunities!
Charles Edquist

WP 2010/06
A three-stage model of the Academy-Industry linking process: the perspective of both agents
Claudia De Fuentes and Gabriela Dutruenit

WP 2010/07
Innovation in symbolic industries: the geography and organisation of knowledge sourcing
Roman Martin and Jerker Moodysson

WP 2010/08
Towards a spatial perspective on sustainability transitions
Lars Coenen, Paul Benneworth and Barnhard Truffer

WP 2010/09
The Swedish national innovation system and its relevance for the emergence of global innovation networks
Cristina Chaminade, Jon Mikal Zabala and Adele Treccani

WP 2010/10
Who leads Research Productivity Change? Guidelines for R&D policy makers
Fernando Jimenez-Saez, Jon Mikal Zabala and Jose L Zofio

WP 2010/11
Research councils facing new science and technology
Frank van der Most and Barend van der Meulen

WP 2010/12
Effect of geographical proximity and technological capabilities on the degree of novelty in emerging economies
Monica Plechero

WP 2010/13
Are knowledge-bases enough? A comparative study of the geography of knowledge sources in China (Great Beijing) and India (Pune)
Cristina Chaminade

WP 2010/14
Regional Innovation Policy beyond ‘Best Practice’: Lessons from Sweden
Roman Martin, Jerker Moodysson and Elena Zukauskaite

WP 2010/15
Innovation in cultural industries: The role of university links
Elena Zukauskaite

WP 2010/16
Use and non-use of research evaluation. A literature review
Frank van der Most

WP 2010/17
Upscaling emerging niche technologies in sustainable energy: an international comparison of policy approaches
Lars Coenen, Roald Suurs and Emma van Sandick

2009

WP 2009/01
Building systems of innovation in less developed countries: The role of intermediate organizations.
Szogs, Astrid; Cummings, Andrew and Chaminade, Cristina

WP 2009/02
The Widening and Deepening of Innovation Policy: What Conditions Provide for Effective Governance?
Borra, Susana

WP 2009/03
Managerial learning and development in small firms: implications based on observations of managerial work
Gabrielson, Jonas and Tell, Joakim

WP 2009/04
University professors and research commercialization: An empirical test of the “knowledge corridor” thesis
Gabrielson, Jonas; Polits, Diamanto and Tell, Joakim

WP 2009/05
On the concept of global innovation networks
Chaminade, Cristina

WP 2009/06
Technological Waves and Economic Growth - Sweden in an International Perspective 1850-2005
Schön, Lennart

WP 2009/07
Public Procurement of Innovation Diffusion: Exploring the Role of Institutions and Institutional Coordination
Röttam, Max; Philipps, Wendy and Bakker, Elmer

WP 2009/08
Local niche experimentation in energy transitions: a theoretical and empirical exploration of proximity advantages and disadvantages
Lars Coenen, Rob Raven, Geert Verbong

WP 2009/09
Product Development Decisions: An empirical approach to Krishnan and Ulrich
Jon Mikel Zabala, Tina Hannemann

WP 2009/10
Dynamics of a Technological Innovator Network and its impact on technological performance
Ju Liu, Cristina Chaminade

WP 2009/11
The Role of Local Universities in Improving Traditional SMEs Innovative Performances: The Veneto Region Case
Monica Plechero

WP 2009/12
Comparing systems approaches to innovation and technological change for sustainable and competitive economies: an explorative study into conceptual commonalities, differences and complementarities
Coenen, Lars and Díaz López, Fernando J.

WP 2009/13
Public Procurement for Innovation (PPI) – a Pilot Study
Charles Edquist

WP 2009/14
Outputs of innovation systems: a European perspective
Charles Edquist and Jon Mikel Zabala

2008

WP 2008/01
R&D and financial systems: the determinants of R&D expenditures in the Swedish pharmaceutical industry
Malmberg, Claes

WP 2008/02
The Development of a New Swedish Innovation Policy. A Historical Institutional Approach
Persson, Bo

WP 2008/03
The Effects of R&D on Regional Invention and Innovation
Olof Ejermo and Urban Gråsjö

WP 2008/04
Clusters in Time and Space: Understanding the Growth and Transformation of Life Science in Scania
Moodysson, Jerker; Nilsson, Magnus; Svensson Henning, Martin

WP 2008/05
Building absorptive capacity in less developed countries
Szöcs, Astrid; Chaminade, Cristina and Azatyan, Ruzana

WP 2008/06
Design of Innovation Policy through Diagnostic Analysis: Identification of Systemic Problems (or Failures)
Edquist, Charles

WP 2008/07
The Swedish Paradox arises in Fast-Growing Sectors
Ejermo, Olof; Kander, Astrid and Svensson, Martin

WP 2008/08
Policy Reforms, New University-Industry Links and Implications for Regional Development in Japan
Kitagawa, Fumi

WP 2008/09
The Challenges of Globalisation: Strategic Choices for Innovation Policy
Borrás, Susana; Chaminade, Cristina and Edquist, Charles

WP 2008/10
Comparing national systems of innovation in Asia and Europe: theory and comparative framework
Edquist, Charles and Hommen, Leif

WP 2008/11
Putting Constructed Regional Advantage into Swedish Practice? The case of the VINNväXT initiative 'Food Innovation at Interfaces'
Coenen, Lars; Moodysson, Jerker

WP 2008/12
Energy transitions in Europe: 1600-2000
Kander, Astrid; Malanima, Paolo and Warde, Paul

WP 2008/13
RIS and Developing Countries: Linking firm technological capabilities to regional systems of innovation
Padilla, Ramon; Vang, Jan and Chaminade, Cristina

WP 2008/14
The paradox of high R&D input and low innovation output: Sweden
Bitarre, Pierre; Edquist, Charles; Hommen, Leif and Ricke, Annika

WP 2008/15
Two Sides of the Same Coin? Local and Global Knowledge Flows in Medicon Valley
Moodysson, Jerker; Coenen, Lars and Asheim, Bjørn

WP 2008/16
Electrification and energy productivity
Enflo, Kerstin; Kander, Astrid and Schön, Lennart

WP 2008/17
Concluding Chapter: Globalisation and Innovation Policy
Hommen, Leif and Edquist, Charles

WP 2008/18
Regional innovation systems and the global location of innovation activities: Lessons from China
Yun-Chung, Chen; Vang, Jan and Chaminade, Cristina

WP 2008/19
The Role of mediator organisations in the making of innovation systems in least developed countries. Evidence from Tanzania
Szogs, Astrid

WP 2008/20
Globalisation of Knowledge Production and Regional Innovation Policy: Supporting Specialized Hubs in the Bangalore Software Industry
Chaminade, Cristina and Vang, Jan

WP 2008/21
Upgrading in Asian clusters: Rethinking the importance of interactive-learning
Chaminade, Cristina and Vang, Jan

2007

WP 2007/01
Path-following or Leapfrogging in Catching-up: the Case of Chinese Telecommunication Equipment Industry
Liu, Xielin

WP 2007/02
The effects of institutional change on innovation and productivity growth in the Swedish pharmaceutical industry
Malmberg, Claes

WP 2007/03
Global-local linkages, Spillovers and Cultural Clusters: Theoretical and Empirical insights from an exploratory study of Toronto’s Film Cluster
Vang, Jan; Chaminade, Cristina

WP 2007/04
Learning from the Bangalore Experience: The Role of Universities in an Emerging Regional Innovation System
Vang, Jan; Chaminade, Cristina; Coenen, Lars.

WP 2007/05
Industrial dynamics and innovative pressure on energy-Sweden with European and Global outlooks
Schön, Lennart; Kander, Astrid

WP 2007/06
In defence of electricity as a general purpose technology
Kander, Astrid; Enflo, Kerstin; Schön, Lennart

WP 2007/07
Swedish business research productivity – improvements against international trends
Ejermo, Olof; Kander, Astrid

WP 2007/08
Regional innovation measured by patent data – does quality matter?
Ejermo, Olof

WP 2007/09
Innovation System Policies in Less Successful Developing countries: The case of Thailand
Intarakumnerd, Patarapong; Chaminade, Cristina

2006

WP 2006/01
The Swedish Paradox
Ejermo, Olof; Kander, Astrid

WP 2006/02
Building RIS in Developing Countries: Policy Lessons from Bangalore, India
Vang, Jan; Chaminade, Cristina

WP 2006/03
Innovation Policy for Asian SMEs: Exploring cluster differences
Chaminade, Cristina; Vang, Jan.

WP 2006/04
Rationales for public intervention from a system of innovation approach: the case of VINNOVA.
Chaminade, Cristina; Edquist, Charles

WP 2006/05
Technology and Trade: an analysis of technology specialization and export flows
Andersson, Martin; Ejermo, Olof

WP 2006/06
A Knowledge-based Categorization of Research-based Spin-off Creation
Gabrielsson, Jonas; Landström, Hans; Brunsnes, E. Thomas

WP 2006/07
Board control and corporate innovation: an empirical study of small technology-based firms
Gabrielsson, Jonas; Politis, Diamanto

WP 2006/08
On and Off the Beaten Path:
Transferring Knowledge through Formal and Informal Networks
Rick Aalbers; Otto Koppus; Wilfred Doltma

WP 2006/09
Trends in R&D, innovation and productivity in Sweden 1985-2002
Ejermo, Olof; Kander, Astrid

WP 2006/10
Development Blocks and the Second Industrial Revolution, Sweden 1900-1974
Enflo, Kerstin; Kander, Astrid; Schön, Lennart

WP 2006/11
The uneven and selective nature of cluster knowledge networks: evidence from the wine industry
Giuliani, Elsa

WP 2006/12
Informal investors and value added: The contribution of investors’ experientially acquired resources in the entrepreneurial process
Politis, Diamanto; Gabrielsson, Jonas

WP 2006/13
Informal investors and value added: What do we know and where do we go?
Politis, Diamanto; Gabrielsson, Jonas

WP 2006/14
Inventive and innovative activity over time and geographical space: the case of Sweden
Ejermo, Olof

2005

WP 2005/1
Constructing Regional Advantage at the Northern Edge
Coenen, Lars; Asheim, Bjørn

WP 2005/02
From Theory to Practice: The Use of the Systems of Innovation Approach for Innovation Policy
Chaminade, Cristina; Edquist, Charles

WP 2005/03
The Role of Regional Innovation Systems in a Globalising Economy: Comparing Knowledge Bases and Institutional Frameworks in Nordic Clusters
Asheim, Bjørn; Coenen, Lars

WP 2005/04
How does Accessibility to Knowledge Sources Affect the Innovativeness of Corporations? Evidence from Sweden
Andersson, Martin; Ejermo, Olof

WP 2005/05
Contextualizing Regional Innovation Systems in a Globalizing Learning Economy: On Knowledge Bases and Institutional Frameworks
Asheim, Bjørn; Coenen, Lars

WP 2005/06
Innovation Policies for Asian SMEs: An Innovation Systems Perspective
Chaminade, Cristina; Vang, Jan

WP 2005/07
Re-norming the Science-Society Relation
Jacob, Merle

WP 2005/08
Corporate innovation and competitive environment
Huse, Morten; Neubaum, Donald O.; Gabrielsson, Jonas
WP 2005/09
Knowledge and accountability: Outside directors’ contribution in the corporate value chain
Huse, Morten, Gabrielson, Jonas; Minichilli, Alessandro

WP 2005/10
Rethinking the Spatial Organization of Creative Industries
Vang, Jan

WP 2005/11
Interregional Inventor Networks as Studied by Patent Co-inventorships
Ejermo, Ölef; Karlsson, Charlie

WP 2005/12
Knowledge Bases and Spatial Patterns of Collaboration: Comparing the Pharma and Agro-Food Bioregions Scania and Saskatoon
Coenen, Lars; Moodysson, Jerker; Ryan, Camille; Asheim, Bjørn; Phillips, Peter

WP 2005/13
Regional Innovation System Policy: a Knowledge-based Approach
Asheim, Bjørn; Coenen, Lars; Moodysson, Jerker; Vang, Jan

WP 2005/14
Face-to-Face, Buzz and Knowledge Bases: Socio-spatial implications for learning and innovation policy
Asheim, Bjørn; Coenen, Lars; Vang, Jan

WP 2005/15
The Creative Class and Regional Growth: Towards a Knowledge Based Approach
Kalsø Hansen, Høgni; Vang, Jan; Bjørn T. Asheim

WP 2005/16
Emergence and Growth of Mjärdevi Science Park in Linköping, Sweden
Hommen, Leif; Doloreux, David; Larsson, Emma

WP 2005/17
Trademark Statistics as Innovation Indicators? – A Micro Study
Malmberg, Claes